Your browser doesn't support javascript.
Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties.
Panikar, Sukanya; Shoba, Gunasekaran; Arun, Muthukrishnan; Sahayarayan, Jesudass Joseph; Usha Raja Nanthini, A; Chinnathambi, Arunachalam; Alharbi, Sulaiman A; Nasif, Omaima; Kim, Hak-Jae.
  • Panikar S; Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.
  • Shoba G; Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India; Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu, India.
  • Arun M; Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
  • Sahayarayan JJ; Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630 003, India.
  • Usha Raja Nanthini A; Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India. Electronic address: biotechurn@gmail.com.
  • Chinnathambi A; Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh 11451, Saudi Arabia.
  • Alharbi SA; Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh 11451, Saudi Arabia.
  • Nasif O; Department of Physiology, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia.
  • Kim HJ; Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea. Electronic address: hakkimabcd@gmail.com.
J Infect Public Health ; 14(5): 601-610, 2021 May.
Article in English | MEDLINE | ID: covidwho-1078022
ABSTRACT

BACKGROUND:

The current health concern to the entire world is the chronic respiratory disease caused by coronavirus 2 (COVID-19). A specific treatment or proper therapy is still lacking, and the investigations from across the world for proper drug/vaccine development towards disease control are in progress. The Coronavirus replication takes place by the conversion of the polypeptide into functional protein and this occurs due to the key enzyme Main protease (Mpro). Therefore, identification of natural and effective Mpro inhibitors could be a safe and promising approach for COVID-19 control.

METHODS:

The present in silico study evaluates the effect of bioactive compounds found in Eucalyptus and Corymbia species essential oil on Mpro by docking. Molecular docking of the major seven compounds of essential oil (citronellol, alpha-terpineol, eucalyptol, d-limonene, 3-carene, o-cymene, and alpha-pinene) with Mpro was studied by AutoDock 4.2, and the properties were analysed by PreADMET and Biovia Discovery Studio visualizer.

RESULTS:

The calculated parameters such as binding energy, hydrophobic interactions, and hydrogen bond interactions of 6LU7 (Mpro) with Eucalyptus and Corymbia volatile secondary metabolites represented its scope as an effective therapy option against covid-19. Among the docked compounds, eucalyptol shows the least binding energy without toxicity.

CONCLUSIONS:

The outcome of this study reported that the essential oil of Eucalyptus and Corymbia species, mainly eucalyptol can be utilized as a potential inhibitor against COVID-19 and also it can be used in its treatment. Hence, further analysis was required to explore its potential application in medicine.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Oils, Volatile / COVID-19 Type of study: Experimental Studies / Prognostic study Topics: Vaccines Limits: Humans Language: English Journal: J Infect Public Health Journal subject: Communicable Diseases / Public Health Year: 2021 Document Type: Article Affiliation country: J.jiph.2020.12.037

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Oils, Volatile / COVID-19 Type of study: Experimental Studies / Prognostic study Topics: Vaccines Limits: Humans Language: English Journal: J Infect Public Health Journal subject: Communicable Diseases / Public Health Year: 2021 Document Type: Article Affiliation country: J.jiph.2020.12.037