Your browser doesn't support javascript.
ECMO Assistance during Mechanical Ventilation: Effects Induced on Energetic and Haemodynamic Variables.
De Lazzari, Beatrice; Iacovoni, Attilio; Mottaghy, Khosrow; Capoccia, Massimo; Badagliacca, Roberto; Vizza, Carmine Dario; De Lazzari, Claudio.
  • De Lazzari B; Department of Engineering, Roma Tre University, Italy. Electronic address: beatrice.delazzari@gmail.com.
  • Iacovoni A; ASST-Papa Giovanni XIII Hospital, Bergamo, Italy. Electronic address: aiacovoni@asst-pg23.it.
  • Mottaghy K; Institute of Physiology, RWTH Aachen University, Deutsch. Electronic address: kmottaghy@ukaachen.de.
  • Capoccia M; Royal Brompton Hospital, Royal Brompton & Harefield NHS Foundation Trust, UK; Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK. Electronic address: capoccia@doctors.org.uk.
  • Badagliacca R; Department of Cardiovascular Respiratory Nephrologic and Geriatric Sciences, Sapienza University of Rome, Italy. Electronic address: roberto.badagliacca@uniroma1.it.
  • Vizza CD; Department of Cardiovascular Respiratory Nephrologic and Geriatric Sciences, Sapienza University of Rome, Italy. Electronic address: dario.vizza@gmail.com.
  • De Lazzari C; National Research Council, Institute of Clinical Physiology (IFC-CNR), Rome, Italy; Teaching University Geomedi, Tbilisi, Georgia. Electronic address: claudio.delazzari@ifc.cnr.it.
Comput Methods Programs Biomed ; 202: 106003, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1081281
ABSTRACT
BACKGROUND AND

OBJECTIVE:

Simulation in cardiovascular medicine may help clinicians understand the important events occurring during mechanical ventilation and circulatory support. During the COVID-19 pandemic, a significant number of patients have required hospital admission to tertiary referral centres for concomitant mechanical ventilation and extracorporeal membrane oxygenation (ECMO). Nevertheless, the management of ventilated patients on circulatory support can be quite challenging. Therefore, we sought to review the management of these patients based on the analysis of haemodynamic and energetic parameters using numerical simulations generated by a software package named CARDIOSIM©.

METHODS:

New modules of the systemic circulation and ECMO were implemented in CARDIOSIM© platform. This is a modular software simulator of the cardiovascular system used in research, clinical and e-learning environment. The new structure of the developed modules is based on the concept of lumped (0-D) numerical modelling. Different ECMO configurations have been connected to the cardiovascular network to reproduce Veno-Arterial (VA) and Veno-Venous (VV) ECMO assistance. The advantages and limitations of different ECMO cannulation strategies have been considered. We have used literature data to validate the effects of a combined ventilation and ECMO support strategy.

RESULTS:

The results have shown that our simulations reproduced the typical effects induced during mechanical ventilation and ECMO assistance. We focused our attention on ECMO with triple cannulation such as Veno-Ventricular-Arterial (VV-A) and Veno-Atrial-Arterial (VA-A) configurations to improve the hemodynamic and energetic conditions of a virtual patient. Simulations of VV-A and VA-A assistance with and without mechanical ventilation have generated specific effects on cardiac output, coupling of arterial and ventricular elastance for both ventricles, mean pulmonary pressure, external work and pressure volume area.

CONCLUSION:

The new modules of the systemic circulation and ECMO support allowed the study of the effects induced by concomitant mechanical ventilation and circulatory support. Based on our clinical experience during the COVID-19 pandemic, numerical simulations may help clinicians with data analysis and treatment optimisation of patients requiring both mechanical ventilation and circulatory support.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Respiration, Artificial / Extracorporeal Membrane Oxygenation / Hemodynamics Type of study: Experimental Studies / Prognostic study Limits: Humans Language: English Journal: Comput Methods Programs Biomed Journal subject: Medical Informatics Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Respiration, Artificial / Extracorporeal Membrane Oxygenation / Hemodynamics Type of study: Experimental Studies / Prognostic study Limits: Humans Language: English Journal: Comput Methods Programs Biomed Journal subject: Medical Informatics Year: 2021 Document Type: Article