Your browser doesn't support javascript.
Auxiliary Diagnosis for COVID-19 with Deep Transfer Learning.
Chen, Hongtao; Guo, Shuanshuan; Hao, Yanbin; Fang, Yijie; Fang, Zhaoxiong; Wu, Wenhao; Liu, Zhigang; Li, Shaolin.
  • Chen H; The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
  • Guo S; The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
  • Hao Y; School of Data Science, University of Science and Technology of China, Hefei, 230026, Anhui, China. haoyanbin@hotmail.com.
  • Fang Y; Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China. haoyanbin@hotmail.com.
  • Fang Z; Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
  • Wu W; The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
  • Liu Z; Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
  • Li S; The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
J Digit Imaging ; 34(2): 231-241, 2021 04.
Article in English | MEDLINE | ID: covidwho-1103473
ABSTRACT
To assist physicians identify COVID-19 and its manifestations through the automatic COVID-19 recognition and classification in chest CT images with deep transfer learning. In this retrospective study, the used chest CT image dataset covered 422 subjects, including 72 confirmed COVID-19 subjects (260 studies, 30,171 images), 252 other pneumonia subjects (252 studies, 26,534 images) that contained 158 viral pneumonia subjects and 94 pulmonary tuberculosis subjects, and 98 normal subjects (98 studies, 29,838 images). In the experiment, subjects were split into training (70%), validation (15%) and testing (15%) sets. We utilized the convolutional blocks of ResNets pretrained on the public social image collections and modified the top fully connected layer to suit our task (the COVID-19 recognition). In addition, we tested the proposed method on a finegrained classification task; that is, the images of COVID-19 were further split into 3 main manifestations (ground-glass opacity with 12,924 images, consolidation with 7418 images and fibrotic streaks with 7338 images). Similarly, the data partitioning strategy of 70%-15%-15% was adopted. The best performance obtained by the pretrained ResNet50 model is 94.87% sensitivity, 88.46% specificity, 91.21% accuracy for COVID-19 versus all other groups, and an overall accuracy of 89.01% for the three-category classification in the testing set. Consistent performance was observed from the COVID-19 manifestation classification task on images basis, where the best overall accuracy of 94.08% and AUC of 0.993 were obtained by the pretrained ResNet18 (P < 0.05). All the proposed models have achieved much satisfying performance and were thus very promising in both the practical application and statistics. Transfer learning is worth for exploring to be applied in recognition and classification of COVID-19 on CT images with limited training data. It not only achieved higher sensitivity (COVID-19 vs the rest) but also took far less time than radiologists, which is expected to give the auxiliary diagnosis and reduce the workload for the radiologists.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Deep Learning / COVID-19 Type of study: Diagnostic study / Experimental Studies / Observational study / Prognostic study / Randomized controlled trials Limits: Humans Language: English Journal: J Digit Imaging Journal subject: Diagnostic Imaging / Medical Informatics / Radiology Year: 2021 Document Type: Article Affiliation country: S10278-021-00431-8

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Deep Learning / COVID-19 Type of study: Diagnostic study / Experimental Studies / Observational study / Prognostic study / Randomized controlled trials Limits: Humans Language: English Journal: J Digit Imaging Journal subject: Diagnostic Imaging / Medical Informatics / Radiology Year: 2021 Document Type: Article Affiliation country: S10278-021-00431-8