Your browser doesn't support javascript.
Characterization of hospital airborne SARS-CoV-2.
Stern, Rebecca A; Koutrakis, Petros; Martins, Marco A G; Lemos, Bernardo; Dowd, Scot E; Sunderland, Elsie M; Garshick, Eric.
  • Stern RA; Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA.
  • Koutrakis P; Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA.
  • Martins MAG; Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA.
  • Lemos B; Department of Environmental Health and Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  • Dowd SE; Molecular Research LP (MR DNA), Shallowater, TX, USA.
  • Sunderland EM; Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA.
  • Garshick E; Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA.
Respir Res ; 22(1): 73, 2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1105712
ABSTRACT

BACKGROUND:

The mechanism for spread of SARS-CoV-2 has been attributed to large particles produced by coughing and sneezing. There is controversy whether smaller airborne particles may transport SARS-CoV-2. Smaller particles, particularly fine particulate matter (≤ 2.5 µm in diameter), can remain airborne for longer periods than larger particles and after inhalation will penetrate deeply into the lungs. Little is known about the size distribution and location of airborne SARS-CoV-2 RNA.

METHODS:

As a measure of hospital-related exposure, air samples of three particle sizes (> 10.0 µm, 10.0-2.5 µm, and ≤ 2.5 µm) were collected in a Boston, Massachusetts (USA) hospital from April to May 2020 (N = 90 size-fractionated samples). Locations included outside negative-pressure COVID-19 wards, a hospital ward not directly involved in COVID-19 patient care, and the emergency department.

RESULTS:

SARS-CoV-2 RNA was present in 9% of samples and in all size fractions at concentrations of 5 to 51 copies m-3. Locations outside COVID-19 wards had the fewest positive samples. A non-COVID-19 ward had the highest number of positive samples, likely reflecting staff congregation. The probability of a positive sample was positively associated (r = 0.95, p < 0.01) with the number of COVID-19 patients in the hospital. The number of COVID-19 patients in the hospital was positively associated (r = 0.99, p < 0.01) with the number of new daily cases in Massachusetts.

CONCLUSIONS:

More frequent detection of positive samples in non-COVID-19 than COVID-19 hospital areas indicates effectiveness of COVID-ward hospital controls in controlling air concentrations and suggests the potential for disease spread in areas without the strictest precautions. The positive associations regarding the probability of a positive sample, COVID-19 cases in the hospital, and cases in Massachusetts suggests that hospital air sample positivity was related to community burden. SARS-CoV-2 RNA with fine particulate matter supports the possibility of airborne transmission over distances greater than six feet. The findings support guidelines that limit exposure to airborne particles including fine particles capable of longer distance transport and greater lung penetration.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Particle Size / SARS-CoV-2 / COVID-19 / Hospitals, Veterans Type of study: Diagnostic study / Observational study Topics: Long Covid Limits: Humans Country/Region as subject: North America Language: English Journal: Respir Res Year: 2021 Document Type: Article Affiliation country: S12931-021-01637-8

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Particle Size / SARS-CoV-2 / COVID-19 / Hospitals, Veterans Type of study: Diagnostic study / Observational study Topics: Long Covid Limits: Humans Country/Region as subject: North America Language: English Journal: Respir Res Year: 2021 Document Type: Article Affiliation country: S12931-021-01637-8