Your browser doesn't support javascript.
Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers.
Nooraei, Saghi; Bahrulolum, Howra; Hoseini, Zakieh Sadat; Katalani, Camellia; Hajizade, Abbas; Easton, Andrew J; Ahmadian, Gholamreza.
  • Nooraei S; Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
  • Bahrulolum H; Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
  • Hoseini ZS; Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
  • Katalani C; Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran.
  • Hajizade A; Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  • Easton AJ; School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK. a.j.easton@warwick.ac.uk.
  • Ahmadian G; Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran. ahmadian@nigeb.ac.ir.
J Nanobiotechnology ; 19(1): 59, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1105715
ABSTRACT
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Vaccines Type of study: Experimental Studies Topics: Vaccines Limits: Humans Language: English Journal: J Nanobiotechnology Year: 2021 Document Type: Article Affiliation country: S12951-021-00806-7

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Vaccines Type of study: Experimental Studies Topics: Vaccines Limits: Humans Language: English Journal: J Nanobiotechnology Year: 2021 Document Type: Article Affiliation country: S12951-021-00806-7