Your browser doesn't support javascript.
Preliminary evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete.
Kilmartin-Lynch, Shannon; Saberian, Mohammad; Li, Jie; Roychand, Rajeev; Zhang, Guomin.
  • Kilmartin-Lynch S; School of Engineering, RMIT University, Melbourne, Victoria, Australia.
  • Saberian M; School of Engineering, RMIT University, Melbourne, Victoria, Australia.
  • Li J; School of Engineering, RMIT University, Melbourne, Victoria, Australia.
  • Roychand R; School of Engineering, RMIT University, Melbourne, Victoria, Australia.
  • Zhang G; School of Engineering, RMIT University, Melbourne, Victoria, Australia.
J Clean Prod ; 296: 126460, 2021 May 10.
Article in English | MEDLINE | ID: covidwho-1118535
ABSTRACT
With the ongoing global pandemic due to Coronavirus (COVID-19), the use of personal protective equipment (PPE), specifically single-use surgical masks, have been on a sharp incline. Currently, many countries are experiencing second and third waves of COVID-19 and as such have resorted to making face masks a mandatory requirement. The repercussions of this have resulted in millions of single-use face masks being discharged into the environment, washing up on beaches, floating beneath oceans and ending up in vulnerable places. The global pandemic has not only affected the economy and health of the world's population but now is seriously threatening the natural environment. The main plastic in single-use face masks is polypropylene which in landfill can take more than 25 years to break down. This paper explores an innovative way to use pandemic waste in concrete construction with the main focus on single-use face masks. Single-use masks have been cut-up by first removing the ear loops and inner nose wire to size and spread throughout five different mix designs to explore the possible benefits and uses within concrete. The masks were introduced by volume at 0% (control), 0.10%, 0.15%, 0.20% and 0.25% with testing focusing on compressive strength, indirect tensile strength, modulus of elasticity and ultrasonic pulse velocity to test the overall quality of the concrete. The introduction of the single-use face masks led to an increase in the strength properties of the concrete samples, as well as an increase in the overall quality of the concrete. However, beyond 0.20%, the trend of increasing strength began to decrease.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies Language: English Journal: J Clean Prod Year: 2021 Document Type: Article Affiliation country: J.jclepro.2021.126460

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies Language: English Journal: J Clean Prod Year: 2021 Document Type: Article Affiliation country: J.jclepro.2021.126460