Your browser doesn't support javascript.
Electronic Cigarette Aerosol Is Cytotoxic and Increases ACE2 Expression on Human Airway Epithelial Cells: Implications for SARS-CoV-2 (COVID-19).
McAlinden, Kielan Darcy; Lu, Wenying; Ferdowsi, Parisa Vahidi; Myers, Stephen; Markos, James; Larby, Josie; Chia, Collin; Weber, Heinrich C; Haug, Greg; Eapen, Mathew Suji; Sohal, Sukhwinder Singh.
  • McAlinden KD; Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia.
  • Lu W; Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia.
  • Ferdowsi PV; Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia.
  • Myers S; Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia.
  • Markos J; Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia.
  • Larby J; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia.
  • Chia C; Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia.
  • Weber HC; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia.
  • Haug G; Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia.
  • Eapen MS; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia.
  • Sohal SS; Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia.
J Clin Med ; 10(5)2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1125903
ABSTRACT
Tobacco smoking has emerged as a risk factor for increasing the susceptibility to infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via increased expression of angiotensin-converting enzyme-2 (ACE2) in the lung, linked to coronavirus disease 2019 (COVID-19) development. Given the modifiable nature of electronic cigarettes and the delivery of high concentrations of nicotine, we investigate whether electronic cigarette vaping has the potential to increase susceptibility to SARS-CoV-2 infection. We exposed BEAS-2B cells (bronchial epithelium transformed with Ad12-SV40 2B) and primary small airway epithelial cells (SAECs) to electronic cigarette aerosol condensates produced from propylene glycol/vegetable glycerin or commercially bought e-liquid (±added nicotine) and cigarette smoke extract to investigate if electronic cigarette exposure, like cigarette smoke, increases the expression of ACE2 in lung epithelial cells. In BEAS-2B cells, cytotoxicity (CCK-8), membrane integrity (LDH), and ACE2 protein expression (immunofluorescence) were measured for both 4- and 24 h treatments in BEAS-2B cells and 4 h in SAECs; ACE2 gene expression was measured using quantitative polymerase chain reaction (qPCR) for 4 h treatment in BEAS-2B cells. Nicotine-free condensates and higher concentrations of nicotine-containing condensates were cytotoxic to BEAS-2B cells. Higher LDH release and reduced membrane integrity were seen in BEAS-2B cells treated for 24 h with higher concentrations of nicotine-containing condensates. ACE2 protein expression was observably increased in all treatments compared to cell controls, particularly for 24 h exposures. ACE2 gene expression was significantly increased in cells exposed to the locally bought e-liquid condensate with high nicotine concentration and cigarette smoke extract compared with cell controls. Our study suggests that vaping alone and smoking alone can result in an increase in lung ACE2 expression. Vaping and smoking are avoidable risk factors for COVID-19, which, if avoided, could help reduce the number of COVID-19 cases and the severity of the disease. This is the first study to utilize electronic cigarette aerosol condensates, novel and developed in our laboratory, for investigating ACE2 expression in human airway epithelial cells.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Observational study / Prognostic study Language: English Year: 2021 Document Type: Article Affiliation country: Jcm10051028

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Observational study / Prognostic study Language: English Year: 2021 Document Type: Article Affiliation country: Jcm10051028