Your browser doesn't support javascript.
Renal Manifestations of Covid-19: Physiology and Pathophysiology.
Armaly, Zaher; Kinaneh, Safa; Skorecki, Karl.
  • Armaly Z; Department of Nephrology, Nazareth Hospital, EMMS, Nazareth 16100, Israel.
  • Kinaneh S; The Bar-Ilan University Azrieli Faculty of Medicine, Safed 1311502, Israel.
  • Skorecki K; Department of Nephrology, Nazareth Hospital, EMMS, Nazareth 16100, Israel.
J Clin Med ; 10(6)2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1136512
ABSTRACT
Corona virus disease 2019 (COVID-19) imposes a serious public health pandemic affecting the whole world, as it is spreading exponentially. Besides its high infectivity, SARS-CoV-2 causes multiple serious derangements, where the most prominent is severe acute respiratory syndrome as well as multiple organ dysfunction including heart and kidney injury. While the deleterious impact of SARS-CoV-2 on pulmonary and cardiac systems have attracted remarkable attention, the adverse effects of this virus on the renal system is still underestimated. Kidney susceptibility to SARS-CoV-2 infection is determined by the presence of angiotensin-converting enzyme 2 (ACE2) receptor which is used as port of the viral entry into targeted cells, tissue tropism, pathogenicity and subsequent viral replication. The SARS-CoV-2 cellular entry receptor, ACE2, is widely expressed in proximal epithelial cells, vascular endothelial and smooth muscle cells and podocytes, where it supports kidney integrity and function via the enzymatic production of Angiotensin 1-7 (Ang 1-7), which exerts vasodilatory, anti-inflammatory, antifibrotic and diuretic/natriuretic actions via activation of the Mas receptor axis. Loss of this activity constitutes the potential basis for the renal damage that occurs in COVID-19 patients. Indeed, several studies in a small sample of COVID-19 patients revealed relatively high incidence of acute kidney injury (AKI) among them. Although SARS-CoV-1 -induced AKI was attributed to multiorgan failure and cytokine release syndrome, as the virus was not detectable in the renal tissue of infected patients, SARS-CoV-2 antigens were detected in kidney tubules, suggesting that SARS-CoV-2 infects the human kidney directly, and eventually induces AKI characterized with high morbidity and mortality. The mechanisms underlying this phenomenon are largely unknown. However, the fact that ACE2 plays a crucial role against renal injury, the deprivation of the kidney of this advantageous enzyme, along with local viral replication, probably plays a central role. The current review focuses on the critical role of ACE2 in renal physiology, its involvement in the development of kidney injury during SARS-CoV-2 infection, renal manifestations and therapeutic options. The latter includes exogenous administration of Ang (1-7) as an appealing option, given the high incidence of AKI in this ACE2-depleted disorder, and the benefits of ACE2/Ang1-7 including vasodilation, diuresis, natriuresis, attenuation of inflammation, oxidative stress, cell proliferation, apoptosis and coagulation.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Observational study Language: English Year: 2021 Document Type: Article Affiliation country: Jcm10061216

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Observational study Language: English Year: 2021 Document Type: Article Affiliation country: Jcm10061216