Your browser doesn't support javascript.
Identifying structural-functional analogue of GRL0617, the only well-established inhibitor for papain-like protease (PLpro) of SARS-CoV2 from the pool of fungal metabolites using docking and molecular dynamics simulation.
Rao, Priyashi; Patel, Rohit; Shukla, Arpit; Parmar, Paritosh; Rawal, Rakesh M; Saraf, Meenu; Goswami, Dweipayan.
  • Rao P; Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
  • Patel R; Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
  • Shukla A; Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
  • Parmar P; Department of Biological Sciences and Biotechnology, Institute of Advanced Research, University of Innovation, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
  • Rawal RM; Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
  • Saraf M; Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
  • Goswami D; Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
Mol Divers ; 26(1): 309-329, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1171933
ABSTRACT
The non-structural protein (nsp)-3 of SARS-CoV2 coronavirus is sought to be an essential target protein which is also named as papain-like protease (PLpro). This protease cleaves the viral polyprotein, but importantly in human host it also removes ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from interferon responsive factor 3 (IRF3) protein which ultimately downregulates the production of type I interferon leading to weakening of immune response. GRL0617 is the most potent known inhibitor for PLpro that was initially developed for SARS outbreak of 2003. The PLpro of SARS-CoV and CoV2 share 83% sequence identity but interestingly have several identical conserved amino acids that suggests GRL0617 to be an effective inhibitor for PLpro of SARS-CoV2. GRL0617 is a naphthalene-based molecule and interacts with Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro). To identify PLpro inhibitors, we prepared a library of secondary metabolites from fungi with aromatic nature and docked them with PLpro of SARS-CoV and SARS-CoV2. We found six hits which interacts with Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro). More surprisingly the top hit, Fonsecin, has naphthalene moiety in its structure, which recruits Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro) and has binding energy at par with control (GRL0617). Molecular dynamics (MD) simulation showed Fonsecin to interact with Tyr268 of SARS-CoV2-PLpro more efficiently than control (GRL0617) and interacting with a greater number of amino acids in the binding cleft of PLpro.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Molecular Dynamics Simulation / COVID-19 Drug Treatment Limits: Humans Language: English Journal: Mol Divers Journal subject: Molecular Biology Year: 2022 Document Type: Article Affiliation country: S11030-021-10220-8

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Molecular Dynamics Simulation / COVID-19 Drug Treatment Limits: Humans Language: English Journal: Mol Divers Journal subject: Molecular Biology Year: 2022 Document Type: Article Affiliation country: S11030-021-10220-8