Your browser doesn't support javascript.
Neutralizing Antibody Therapeutics for COVID-19
Viruses ; 13(4):07, 2021.
Article in English | MEDLINE | ID: covidwho-1209615
ABSTRACT
The emergence of SARS-CoV-2 and subsequent COVID-19 pandemic has resulted in a significant global public health burden, leading to an urgent need for effective therapeutic strategies. In this article, we review the role of SARS-CoV-2 neutralizing antibodies (nAbs) in the clinical management of COVID-19 and provide an overview of recent randomized controlled trial data evaluating nAbs in the ambulatory, hospitalized and prophylaxis settings. Two nAb cocktails (casirivimab/imdevimab and bamlanivimab/etesevimab) and one nAb monotherapy (bamlanivimab) have been granted Emergency Use Authorization by the US Food and Drug Administration for the treatment of ambulatory patients who have a high risk of progressing to severe disease, and the European Medicines Agency has similarly recommended both cocktails and bamlanivimab monotherapy for use in COVID-19 patients who do not require supplemental oxygen and who are at high risk of progressing to severe COVID-19. Efficacy of nAbs in hospitalized patients with COVID-19 has been varied, potentially highlighting the challenges of antiviral treatment in patients who have already progressed to severe disease. However, early data suggest a promising prophylactic role for nAbs in providing effective COVID-19 protection. We also review the risk of treatment-emergent antiviral resistant "escape" mutants and strategies to minimize their occurrence, discuss the susceptibility of newly emerging SARS-COV-2 variants to nAbs, as well as explore administration challenges and ways to improve patient access.

Full text: Available Collection: Databases of international organizations Database: MEDLINE Language: English Journal: Viruses Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: MEDLINE Language: English Journal: Viruses Year: 2021 Document Type: Article