Your browser doesn't support javascript.
Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis.
Occhigrossi, Luca; Rossin, Federica; D'Eletto, Manuela; Farrace, Maria Grazia; Ciccosanti, Fabiola; Petrone, Linda; Sacchi, Alessandra; Nardacci, Roberta; Falasca, Laura; Del Nonno, Franca; Palucci, Ivana; Smirnov, Evgeni; Barlev, Nick; Agrati, Chiara; Goletti, Delia; Delogu, Giovanni; Fimia, Gian Maria; Piacentini, Mauro.
  • Occhigrossi L; Department of Biology, University of Rome "Tor Vergata," Rome, Italy.
  • Rossin F; Department of Biology, University of Rome "Tor Vergata," Rome, Italy.
  • D'Eletto M; Department of Biology, University of Rome "Tor Vergata," Rome, Italy.
  • Farrace MG; Department of Biology, University of Rome "Tor Vergata," Rome, Italy.
  • Ciccosanti F; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Petrone L; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Sacchi A; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Nardacci R; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Falasca L; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Del Nonno F; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Palucci I; Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Gemelli, Rome, Italy.
  • Smirnov E; Institute of Cytology, Saint Petersburg, Russia.
  • Barlev N; Institute of Cytology, Saint Petersburg, Russia.
  • Agrati C; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Goletti D; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Delogu G; Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Gemelli, Rome, Italy.
  • Fimia GM; National Institute for Infectious Diseases IRCCS "L. Spallanzani," Rome, Italy.
  • Piacentini M; Department of Molecular Medicine, University of Rome "La Sapienza," Rome, Italy.
J Immunol ; 206(10): 2420-2429, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-1215526
ABSTRACT
We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-ß production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNß production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-ß production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Signal Transduction / Transglutaminases / Protein Serine-Threonine Kinases / GTP-Binding Proteins / Interferon Regulatory Factor-3 / SARS-CoV-2 / COVID-19 / Immunity, Innate / Membrane Proteins Limits: Animals / Humans Language: English Journal: J Immunol Year: 2021 Document Type: Article Affiliation country: Jimmunol.2001122

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Signal Transduction / Transglutaminases / Protein Serine-Threonine Kinases / GTP-Binding Proteins / Interferon Regulatory Factor-3 / SARS-CoV-2 / COVID-19 / Immunity, Innate / Membrane Proteins Limits: Animals / Humans Language: English Journal: J Immunol Year: 2021 Document Type: Article Affiliation country: Jimmunol.2001122