Your browser doesn't support javascript.
Antivirals virtual screening to SARS-CoV-2 non-structural proteins.
Nunes, Vinicius S; Paschoal, Diego F S; Costa, Luiz Antônio S; Santos, Hélio F Dos.
  • Nunes VS; NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil.
  • Paschoal DFS; NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brasil.
  • Costa LAS; NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil.
  • Santos HFD; NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil.
J Biomol Struct Dyn ; : 1-15, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-2274509
ABSTRACT
In March 2020, the World Health Organization (WHO) declared coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pandemic. Since then, the search for a vaccine or drug for COVID-19 treatment has started worldwide. In this regard, a fast approach is the repurposing of drugs, primarily antiviral drugs. Herein, we performed a virtual screening using 22 antiviral drugs retrieved from the DrugBank repository, azithromycin (antibiotic), ivermectin (antinematode), and seven non-structural proteins (Nsps) of SARS-CoV-2, which are considered important targets for drugs, via molecular docking and molecular dynamics simulations. Drug-receptor binding energy was employed as the main descriptor. Based on the results, paritaprevir was predicted as a promising multi-target drug that favorably bound to all tested Nsps, mainly adipose differentiation-related protein (ADRP) (-36.2 kcal mol-1) and coronavirus main proteinase (Mpro) (-32.2 kcal mol-1). Moreover, the results suggest that simeprevir is a strong inhibitor of Mpro (-37.2 kcal mol-1), which is an interesting finding because Mpro plays an important role in viral replication. In addition to drug-receptor affinity, hot spot residues were characterized to facilitate the design of new drug derivatives with improved biological responses.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Topics: Vaccines Language: English Journal: J Biomol Struct Dyn Year: 2021 Document Type: Article Affiliation country: 07391102.2021.1921033

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Topics: Vaccines Language: English Journal: J Biomol Struct Dyn Year: 2021 Document Type: Article Affiliation country: 07391102.2021.1921033