Your browser doesn't support javascript.
Atmospheric concentration, particle-bound content, and dry deposition of PCDD/FS
Aerosol and Air Quality Research ; 21(5), 2021.
Article in English | Scopus | ID: covidwho-1234872
ABSTRACT
In this study, the atmospheric total-PCDD/Fs-WHO2005-TEQ concentrations, gas-particle partitioning, PM2.5 concentration, PM2.5-bound total PCDD/Fs-WHO2005-TEQ content and dry deposition flux in Shanghai and Nanjing were investigated from 2018-2020. In Shanghai, the total PCDD/Fs-WHO2005-TEQ concentration dropped from 0.0291 pg-WHO2005-TEQ m–3 from 2018–2019 to 0.0250 pg-WHO2005-TEQ m–3 in 2020, while in Nanjing, it dropped from 0.0423 pg-WHO2005-TEQ m–3 to 0.0338 pg-WHO2005-TEQ m–3. The average concentrations of PCDD/Fs-WHO2005-TEQ in spring and winter in Shanghai and Nanjing were 47.6% and 53.8% higher than those in summer, respectively. From 2018-2019, the average particle phase fractions of total-PCDD/Fs-WHO2005-TEQ in Shanghai and Nanjing were 50.3% and 57.5%, respectively, while in 2020, they were 47.8% and 55.1%, respectively. From 2018-2019, the average PM2.5-bound total PCDD/Fs-WHO2005-TEQ content was 0.342 and 0.493 ng-WHO2005-TEQ g–1 in Shanghai and Nanjing, respectively, while in 2020, it was 0.312 and 0.489 ng-WHO2005-TEQ g–1, respectively. In Shanghai and Nanjing, the average PM2.5-bound total PCDD/Fs-WHO2005-TEQ content in spring and winter was 77.5% and 73.2% higher than that in summer, respectively. From 2018–2019, the dry deposition flux of total-PCDD/Fs-WHO2005-TEQ was 316.3 and 460.5 pg WHO2005-TEQ m–2 month–1 in Shanghai and Nanjing, respectively, while in 2020, it was 272.5 and 368.4 pg WHO2005-TEQ m–2 month–1, respectively. The average dry deposition flux of total-PCDD/Fs-WHO2005-TEQ in spring and winter was 47.6% and 53.8% higher than that summer in Shanghai and Nanjing, respectively. The above results indicate that COVID-19 in 2020 had a positive effect on air quality improvement in PCDD/Fs. On average, more than 98.88% of the total PCDD/Fs-WHO2005-TEQ dry deposition flux was primarily contributed by the particle phase. This was attributed to the fact that dry deposition of particle phase PCDD/Fs was mainly due to gravitational settling accompanied by higher dry deposition velocities, while the gas phase PCDD/Fs were deposited mostly by diffusion at a lower dry deposition velocity. © The Author(s).

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Aerosol and Air Quality Research Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Aerosol and Air Quality Research Year: 2021 Document Type: Article