Your browser doesn't support javascript.
Formulation of a Composite Nasal Spray Enabling Enhanced Surface Coverage and Prophylaxis of SARS-COV-2.
Moakes, Richard J A; Davies, Scott P; Stamataki, Zania; Grover, Liam M.
  • Moakes RJA; Healthcare Technology Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
  • Davies SP; Institute of Immunology and Immunotherapy, School of Medicine and Dentistry, University of Birmingham, Birmingham, B15 2GW, UK.
  • Stamataki Z; Institute of Immunology and Immunotherapy, School of Medicine and Dentistry, University of Birmingham, Birmingham, B15 2GW, UK.
  • Grover LM; Healthcare Technology Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
Adv Mater ; 33(26): e2008304, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1248674
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
Airborne pathogens pose high risks in terms of both contraction and transmission within the respiratory pathways, particularly the nasal region. However, there is little in the way of adequate intervention that can protect an individual or prevent further spread. This study reports on a nasal formulation with the capacity to combat such challenges, focusing on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Formulation of a polysaccharide-based spray, known for its mucoadhesive properties, is undertaken and it is characterized for its mechanical, spray distribution, and antiviral properties. The ability to engineer key mechanical characteristics such as dynamic yield stresses and high coverage is shown, through systematic understanding of the composite mixture containing both gellan and λ-carrageenan. Furthermore, the spray systems demonstrate highly potent capacities to prevent SARS-CoV-2 infection in Vero cells, resulting in complete inhibition when either treating, the cells, or the virus, prior to challenging for infection. From this data, a mechanism for both prophylaxis and prevention is proposed; where entrapment within a polymeric coating sterically blocks virus uptake into the cells, inactivating the virus, and allowing clearance within the viscous medium. As such, a fully preventative spray is formulated, targeted at protecting the lining of the upper respiratory pathways against SARS-CoV-2.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Polymers / Drug Compounding / Nasal Sprays / SARS-CoV-2 Type of study: Prognostic study / Systematic review/Meta Analysis Limits: Animals / Humans Language: English Journal: Adv Mater Journal subject: Biophysics / Chemistry Year: 2021 Document Type: Article Affiliation country: Adma.202008304

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Polymers / Drug Compounding / Nasal Sprays / SARS-CoV-2 Type of study: Prognostic study / Systematic review/Meta Analysis Limits: Animals / Humans Language: English Journal: Adv Mater Journal subject: Biophysics / Chemistry Year: 2021 Document Type: Article Affiliation country: Adma.202008304