Your browser doesn't support javascript.
A potential antiviral activity of Esculentoside A against binding interactions of SARS-COV-2 spike protein and angiotensin converting enzyme 2 (ACE2).
Zeng, Mao-Sen; Yu, Wen-Di; Wang, Hui-Xian; Liu, Jin-Yuan; Xu, Pei-Ping.
  • Zeng MS; Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
  • Yu WD; Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
  • Wang HX; Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
  • Liu JY; Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
  • Xu PP; Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China. Electronic address: xupeiping@gzucm.edu.cn.
Int J Biol Macromol ; 183: 2248-2261, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1260750
ABSTRACT
The recent emergence of the novel coronavirus (SARS-CoV-2) has resulted in a devastating pandemic with global concern. However, to date, there are no regimens to prevent and treat SARS-CoV-2 virus. There is an urgent need to identify novel leads with anti-viral properties that impede viral pathogenesis in the host system. Esculentoside A (EsA), a saponin isolated from the root of Phytolacca esculenta, is known to exhibit diverse pharmacological properties, especially anti-inflammatory activity. To our knowledge, SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) to enter host cells. This is mediated through the proteins of SARS-CoV-2, especially the spike glycoprotein receptor binding domain. Thus, our primary goal is to prevent virus replication and binding to the host, which allows us to explore the efficiency of EsA on key surface drug target proteins using the computational biology paradigm approach. Here, the anti-coronavirus activity of EsA in vitro and its potential mode of inhibitory action on the S-protein of SARS-CoV-2 were investigated. We found that EsA inhibited the HCoV-OC43 coronavirus during the attachment and penetration stage. Molecular docking results showed that EsA had a strong binding affinity with the spike glycoprotein from SARS-CoV-2. The results of the molecular dynamics simulation revealed that EsA had higher stable binding with the spike protein. These results demonstrated that Esculentoside A can act as a spike protein blocker to inhibit SARS-CoV-2. Considering the poor bioavailability and low toxicity of EsA, it is suitable as novel lead for the inhibitor against binding interactions of SARS-CoV-2 of S-protein and ACE2.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Oleanolic Acid / Antiviral Agents / Saponins / Molecular Dynamics Simulation / Molecular Docking Simulation / Spike Glycoprotein, Coronavirus / Angiotensin-Converting Enzyme 2 / SARS-CoV-2 / COVID-19 Drug Treatment Limits: Humans Language: English Journal: Int J Biol Macromol Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Oleanolic Acid / Antiviral Agents / Saponins / Molecular Dynamics Simulation / Molecular Docking Simulation / Spike Glycoprotein, Coronavirus / Angiotensin-Converting Enzyme 2 / SARS-CoV-2 / COVID-19 Drug Treatment Limits: Humans Language: English Journal: Int J Biol Macromol Year: 2021 Document Type: Article