Your browser doesn't support javascript.
Simulated sunlight decreases the viability of SARS-CoV-2 in mucus.
Sloan, Angela; Cutts, Todd; Griffin, Bryan D; Kasloff, Samantha; Schiffman, Zachary; Chan, Mable; Audet, Jonathan; Leung, Anders; Kobasa, Darwyn; Stein, Derek R; Safronetz, David; Poliquin, Guillaume.
  • Sloan A; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Cutts T; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Griffin BD; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Kasloff S; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Schiffman Z; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Chan M; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
  • Audet J; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Leung A; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Kobasa D; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Stein DR; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
  • Safronetz D; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
  • Poliquin G; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
PLoS One ; 16(6): e0253068, 2021.
Article in English | MEDLINE | ID: covidwho-1264227
ABSTRACT
The novel coronavirus, SARS-CoV-2, has spread into a pandemic since its emergence in Wuhan, China in December of 2019. This has been facilitated by its high transmissibility within the human population and its ability to remain viable on inanimate surfaces for an extended period. To address the latter, we examined the effect of simulated sunlight on the viability of SARS-CoV-2 spiked into tissue culture medium or mucus. The study revealed that inactivation took 37 minutes in medium and 107 minutes in mucus. These times-to-inactivation were unexpected since they are longer than have been observed in other studies. From this work, we demonstrate that sunlight represents an effective decontamination method but the speed of decontamination is variable based on the underlying matrix. This information has an important impact on the development of infection prevention and control protocols to reduce the spread of this deadly pathogen.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Sunlight / Decontamination / Virus Inactivation / SARS-CoV-2 / COVID-19 / Mucus Limits: Humans Language: English Journal: PLoS One Journal subject: Science / Medicine Year: 2021 Document Type: Article Affiliation country: Journal.pone.0253068

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Sunlight / Decontamination / Virus Inactivation / SARS-CoV-2 / COVID-19 / Mucus Limits: Humans Language: English Journal: PLoS One Journal subject: Science / Medicine Year: 2021 Document Type: Article Affiliation country: Journal.pone.0253068