Your browser doesn't support javascript.
Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review.
Sun, Argus M; Hoffman, Tyler; Luu, Bao Q; Ashammakhi, Nureddin; Li, Song.
  • Sun AM; Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA.
  • Hoffman T; UC San Diego Healthcare, UCSD, La Jolla, CA 92037 USA.
  • Luu BQ; Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA.
  • Ashammakhi N; Pulmonary Diseases and Critical Care, Scripps Green Hospital, Scripps Health, La Jolla, CA 92037 USA.
  • Li S; Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA.
Biodes Manuf ; 4(4): 757-775, 2021.
Article in English | MEDLINE | ID: covidwho-1275041
ABSTRACT
There is a pressing need for effective therapeutics for coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The process of drug development is a costly and meticulously paced process, where progress is often hindered by the failure of initially promising leads. To aid this challenge, in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening, thereby saving valuable time and resources during a pandemic crisis. The SARS-CoV-2 virus attacks the lung, an organ where the unique three-dimensional (3D) structure of its functional units is critical for proper respiratory function. The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types. Current model systems include Transwell, organoid and organ-on-a-chip or microphysiological systems (MPSs). We review models that have direct relevance toward modeling the pathology of COVID-19, including the processes of inflammation, edema, coagulation, as well as lung immune function. We also consider the practical issues that may influence the design and fabrication of MPS. The role of lung MPS is addressed in the context of multi-organ models, and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Language: English Journal: Biodes Manuf Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Language: English Journal: Biodes Manuf Year: 2021 Document Type: Article