Your browser doesn't support javascript.
The role of the envelope protein in the stability of a coronavirus model membrane against an ethanolic disinfectant.
Das, Shubhadip; Meinel, Melissa K; Wu, Zhenghao; Müller-Plathe, Florian.
  • Das S; Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany.
  • Meinel MK; Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany.
  • Wu Z; Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany.
  • Müller-Plathe F; Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany.
J Chem Phys ; 154(24): 245101, 2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1293030
ABSTRACT
Ethanol is highly effective against various enveloped viruses and can disable the virus by disintegrating the protective envelope surrounding it. The interactions between the coronavirus envelope (E) protein and its membrane environment play key roles in the stability and function of the viral envelope. By using molecular dynamics simulation, we explore the underlying mechanism of ethanol-induced disruption of a model coronavirus membrane and, in detail, interactions of the E-protein and lipids. We model the membrane bilayer as N-palmitoyl-sphingomyelin and 1-palmitoyl-2-oleoylphosphatidylcholine lipids and the coronavirus E-protein. The study reveals that ethanol causes an increase in the lateral area of the bilayer along with thinning of the bilayer membrane and orientational disordering of lipid tails. Ethanol resides at the head-tail region of the membrane and enhances bilayer permeability. We found an envelope-protein-mediated increase in the ordering of lipid tails. Our simulations also provide important insights into the orientation of the envelope protein in a model membrane environment. At ∼25 mol. % of ethanol in the surrounding ethanol-water phase, we observe disintegration of the lipid bilayer and dislocation of the E-protein from the membrane environment.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Cell Membrane / Viral Envelope Proteins / Coronavirus / Disinfectants / Ethanol Language: English Journal: J Chem Phys Year: 2021 Document Type: Article Affiliation country: 5.0055331

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Cell Membrane / Viral Envelope Proteins / Coronavirus / Disinfectants / Ethanol Language: English Journal: J Chem Phys Year: 2021 Document Type: Article Affiliation country: 5.0055331