Your browser doesn't support javascript.
Evaluation of in vitro activity of copper gluconate against SARS-CoV-2 using confocal microscopy-based high content screening.
Rodriguez, Killian; Saunier, Florian; Rigaill, Josselin; Audoux, Estelle; Botelho-Nevers, Elisabeth; Prier, Amélie; Dickerscheit, Yann; Pillet, Sylvie; Pozzetto, Bruno; Bourlet, Thomas; Verhoeven, Paul O.
  • Rodriguez K; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France.
  • Saunier F; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Infectious Diseases Department, University Hospital of St-Etienne, France.
  • Rigaill J; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France.
  • Audoux E; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France.
  • Botelho-Nevers E; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Infectious Diseases Department, University Hospital of St-Etienne, France.
  • Prier A; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France.
  • Dickerscheit Y; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France.
  • Pillet S; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France.
  • Pozzetto B; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France.
  • Bourlet T; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France.
  • Verhoeven PO; CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France. Electronic address: paul.ver
J Trace Elem Med Biol ; 68: 126818, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1300926
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
CONTEXT Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that emerged late in 2019 is the etiologic agent of coronavirus disease 2019 (Covid-19). There is an urgent need to develop curative and preventive therapeutics to limit the current pandemic and to prevent the re-emergence of Covid-19. This study aimed to assess the in vitro activity of copper gluconate against SARS-CoV-2.

METHODS:

Vero E6 cells were cultured with or without copper gluconate 18-24 hours before infection. Cells were infected with a recombinant GFP expressing SARS-CoV-2. Cells were infected with a recombinant GFP expressing SARS-CoV-2. Infected cells were incubated in fresh medium containing varying concentration of copper gluconate (supplemented with bovine serum albumin or not) for an additional 48 -h period. The infection level was measured by the confocal microscopy-based high content screening method. The cell viability in presence of copper gluconate was assessed by XTT and propidium iodide assays.

RESULTS:

The viability of Vero E6 cells exposed to copper gluconate up to 200 µM was found to be similar to that of unexposed cells, but it dropped below 70 % with 400 µM of this agent after 72 h of continuous exposure. The infection rate was 23.8 %, 18.9 %, 20.6 %, 6.9 %, 5.3 % and 5.2 % in cells treated prior infection with 0, 2, 10, 25, 50 and 100 µM of copper gluconate respectively. As compared to untreated cells, the number of infected cells was reduced by 71 %, 77 %, and 78 % with 25, 50, and 100 µM of copper gluconate respectively (p < 0.05). In cells treated only post-infection, the rate of infection dropped by 73 % with 100 µM of copper gluconate (p < 0.05). However, the antiviral activity of copper gluconate was abolished by the addition of bovine serum albumin.

CONCLUSION:

Copper gluconate was found to mitigate SARS-CoV-2 infection in Vero E6 cells but this effect was abolished by albumin, which suggests that copper will not retain its activity in serum. Furthers studies are needed to investigate whether copper gluconate could be of benefit in mucosal administration such as mouthwash, nasal spray or aerosols.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Microscopy, Confocal / SARS-CoV-2 / Gluconates Type of study: Etiology study / Experimental Studies / Prognostic study Limits: Animals Language: English Journal: J Trace Elem Med Biol Journal subject: Metabolism / Environmental Health Year: 2021 Document Type: Article Affiliation country: J.jtemb.2021.126818

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Microscopy, Confocal / SARS-CoV-2 / Gluconates Type of study: Etiology study / Experimental Studies / Prognostic study Limits: Animals Language: English Journal: J Trace Elem Med Biol Journal subject: Metabolism / Environmental Health Year: 2021 Document Type: Article Affiliation country: J.jtemb.2021.126818