Your browser doesn't support javascript.
Development and implementation of a scalable and versatile test for COVID-19 diagnostics in rural communities.
Ceci, A; Muñoz-Ballester, C; Tegge, A N; Brown, K L; Umans, R A; Michel, F M; Patel, D; Tewari, B; Martin, J; Alcoreza, O; Maynard, T; Martinez-Martinez, D; Bordwine, P; Bissell, N; Friedlander, M J; Sontheimer, H; Finkielstein, C V.
  • Ceci A; Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA.
  • Muñoz-Ballester C; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
  • Tegge AN; Department of Statistics, Virginia Tech, Blacksburg, VA, USA.
  • Brown KL; Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
  • Umans RA; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
  • Michel FM; Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.
  • Patel D; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
  • Tewari B; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
  • Martin J; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
  • Alcoreza O; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA.
  • Maynard T; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
  • Martinez-Martinez D; Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
  • Bordwine P; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA.
  • Bissell N; Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
  • Friedlander MJ; MRC London Institute of Medical Sciences, London, UK.
  • Sontheimer H; Institute of Clinical Sciences, Imperial College London, London, UK.
  • Finkielstein CV; Division of Surveillance and Investigation, Office of Epidemiology, Virginia Department of Health, Christiansburg, USA.
Nat Commun ; 12(1): 4400, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1319026
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
Rapid and widespread testing of severe acute respiratory coronavirus 2 (SARS-CoV-2) is essential for an effective public health response aimed at containing and mitigating the coronavirus disease 2019 (COVID-19) pandemic. Successful health policy implementation relies on early identification of infected individuals and extensive contact tracing. However, rural communities, where resources for testing are sparse or simply absent, face distinctive challenges to achieving this success. Accordingly, we report the development of an academic, public land grant University laboratory-based detection assay for the identification of SARS-CoV-2 in samples from various clinical specimens that can be readily deployed in areas where access to testing is limited. The test, which is a quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based procedure, was validated on samples provided by the state laboratory and submitted for FDA Emergency Use Authorization. Our test exhibits comparable sensitivity and exceeds specificity and inclusivity values compared to other molecular assays. Additionally, this test can be re-configured to meet supply chain shortages, modified for scale up demands, and is amenable to several clinical specimens. Test development also involved 3D engineering critical supplies and formulating a stable collection media that allowed samples to be transported for hours over a dispersed rural region without the need for a cold-chain. These two elements that were critical when shortages impacted testing and when personnel needed to reach areas that were geographically isolated from the testing center. Overall, using a robust, easy-to-adapt methodology, we show that an academic laboratory can supplement COVID-19 testing needs and help local health departments assess and manage outbreaks. This additional testing capacity is particularly germane for smaller cities and rural regions that would otherwise be unable to meet the testing demand.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Reagent Kits, Diagnostic / Rural Health Services / COVID-19 Nucleic Acid Testing / COVID-19 Type of study: Diagnostic study / Observational study / Prognostic study Limits: Humans Language: English Journal: Nat Commun Journal subject: Biology / Science Year: 2021 Document Type: Article Affiliation country: S41467-021-24552-4

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Reagent Kits, Diagnostic / Rural Health Services / COVID-19 Nucleic Acid Testing / COVID-19 Type of study: Diagnostic study / Observational study / Prognostic study Limits: Humans Language: English Journal: Nat Commun Journal subject: Biology / Science Year: 2021 Document Type: Article Affiliation country: S41467-021-24552-4