Your browser doesn't support javascript.
Impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variant-Associated Receptor Binding Domain (RBD) Mutations on the Susceptibility to Serum Antibodies Elicited by Coronavirus Disease 2019 (COVID-19) Infection or Vaccination.
Chen, Lin-Lei; Lu, Lu; Choi, Charlotte Yee-Ki; Cai, Jian-Piao; Tsoi, Hoi-Wah; Chu, Allen Wing-Ho; Ip, Jonathan Daniel; Chan, Wan-Mui; Zhang, Ricky Ruiqi; Zhang, Xiaojuan; Tam, Anthony Raymond; Lau, Daphne Pui-Ling; To, Wing-Kin; Que, Tak-Lun; Yip, Cyril Chik-Yan; Chan, Kwok-Hung; Cheng, Vincent Chi-Chung; Yuen, Kwok-Yung; Hung, Ivan Fan-Ngai; To, Kelvin Kai-Wang.
  • Chen LL; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Lu L; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Choi CY; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Cai JP; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Tsoi HW; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Chu AW; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Ip JD; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Chan WM; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Zhang RR; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Zhang X; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Tam AR; Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China.
  • Lau DP; Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, People's Republic of China.
  • To WK; Department of Pathology, Princess Margaret Hospital, Hong Kong Special Administrative Region, People's Republic of China.
  • Que TL; Department of Pathology, Tuen Mun Hospital, Hong Kong Special Administrative Region, People's Republic of China.
  • Yip CC; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China.
  • Chan KH; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Cheng VC; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China.
  • Yuen KY; State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
  • Hung IF; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China.
  • To KK; Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China.
Clin Infect Dis ; 74(9): 1623-1630, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1707925
ABSTRACT

BACKGROUND:

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages with mutations at the spike protein receptor binding domain (RBD) have reduced susceptibility to antibody neutralization, and have been classified as variants of concern (VOCs) or variants of interest (VOIs). Here we systematically compared the neutralization susceptibility and RBD binding of different VOCs/VOIs, including B.1.617.1 (kappa variant) and P.3 (theta variant), which were first detected in India and the Philippines, respectively.

METHODS:

The neutralization susceptibility of the VOCs/VOIs (B.1.351, B.1.617.1, and P.3) and a non-VOC/VOI without RBD mutations (B.1.36.27) to convalescent sera from coronavirus disease 2019 (COVID-19) patients or BNT162b2 vaccinees was determined using a live virus microneutralization (MN) assay. Serum immunoglobulin G (IgG) binding to wild-type and mutant RBDs were determined using an enzyme immunoassay.

RESULTS:

The geometric mean neutralization titers (GMT) of B.1.351, P.3, and B.1.617.1 were significantly lower than that of B.1.36.27 for COVID-19 patients infected with non-VOCs/VOIs (3.4- to 5.7-fold lower) or individuals who have received 2 doses of BNT162b2 vaccine (4.4- to 7.3-fold lower). The GMT of B.1.351 or P.3 were lower than that of B.1.617.1. For the 4 patients infected with B.1.351 or B.1.617.1, the MN titer was highest for their respective lineage. RBD with E484K or E484Q mutation, either alone or in combination with other mutations, showed greatest reduction in serum IgG binding.

CONCLUSIONS:

P.3 and B.1.617.1 escape serum neutralization induced by natural infection or vaccine. Infection with 1 variant does not confer cross-protection for heterologous lineages. Immunogenicity testing for second generation COVID-19 vaccines should include multiple variant and "nonvariant" strains.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Randomized controlled trials Topics: Vaccines / Variants Limits: Humans Language: English Journal: Clin Infect Dis Journal subject: Communicable Diseases Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Randomized controlled trials Topics: Vaccines / Variants Limits: Humans Language: English Journal: Clin Infect Dis Journal subject: Communicable Diseases Year: 2022 Document Type: Article