Your browser doesn't support javascript.
Increased Pace of Aging in COVID-Related Mortality.
Galkin, Fedor; Parish, Austin; Bischof, Evelyne; Zhang, John; Mamoshina, Polina; Zhavoronkov, Alex.
  • Galkin F; Deep Longevity, Hong Kong, China.
  • Parish A; Department of Emergency Medicine, Lincoln Medical and Mental Health Center, Bronx, NY 10451, USA.
  • Bischof E; Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA 94305, USA.
  • Zhang J; International Center for Multimorbidity and Complexity in Medicine (ICMC), Universität Zürich, 8006 Zürich, Switzerland.
  • Mamoshina P; Basic and Clinical Medicine Department, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
  • Zhavoronkov A; NYC Health + Hospitals, Lincoln Medical Center, Bronx, NY 10451, USA.
Life (Basel) ; 11(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325725
ABSTRACT
Identifying prognostic biomarkers and risk stratification for COVID-19 patients is a challenging necessity. One of the core survival factors is patient age. However, chronological age is often severely biased due to dormant conditions and existing comorbidities. In this retrospective cohort study, we analyzed the data from 5315 COVID-19 patients (1689 lethal cases) admitted to 11 public hospitals in New York City from 1 March 2020 to 1 December. We calculated patients' pace of aging with BloodAge-a deep learning aging clock trained on clinical blood tests. We further constructed survival models to explore the prognostic value of biological age compared to that of chronological age. A COVID-19 score was developed to support a practical patient stratification in a clinical setting. Lethal COVID-19 cases had higher predicted age, compared to non-lethal cases (Δ = 0.8-1.6 years). Increased pace of aging was a significant risk factor of COVID-related mortality (hazard ratio = 1.026 per year, 95% CI = 1.001-1.052). According to our logistic regression model, the pace of aging had a greater impact (adjusted odds ratio = 1.09 ± 0.00, per year) than chronological age (1.04 ± 0.00, per year) on the lethal infection outcome. Our results show that a biological age measure, derived from routine clinical blood tests, adds predictive power to COVID-19 survival models.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Cohort study / Observational study / Prognostic study Language: English Year: 2021 Document Type: Article Affiliation country: Life11080730

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Cohort study / Observational study / Prognostic study Language: English Year: 2021 Document Type: Article Affiliation country: Life11080730