Your browser doesn't support javascript.
A digital single-molecule nanopillar SERS platform for predicting and monitoring immune toxicities in immunotherapy.
Li, Junrong; Wuethrich, Alain; Sina, Abu A I; Cheng, Han-Hao; Wang, Yuling; Behren, Andreas; Mainwaring, Paul N; Trau, Matt.
  • Li J; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.
  • Wuethrich A; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia. a.wuethrich@uq.edu.au.
  • Sina AAI; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.
  • Cheng HH; Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia.
  • Wang Y; Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia. yuling.wang@mq.edu.au.
  • Behren A; Oliva Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia.
  • Mainwaring PN; Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia.
  • Trau M; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.
Nat Commun ; 12(1): 1087, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1333934
ABSTRACT
The introduction of immune checkpoint inhibitors has demonstrated significant improvements in survival for subsets of cancer patients. However, they carry significant and sometimes life-threatening toxicities. Prompt prediction and monitoring of immune toxicities have the potential to maximise the benefits of immune checkpoint therapy. Herein, we develop a digital nanopillar SERS platform that achieves real-time single cytokine counting and enables dynamic tracking of immune toxicities in cancer patients receiving immune checkpoint inhibitor treatment - broader applications are anticipated in other disease indications. By analysing four prospective cytokine biomarkers that initiate inflammatory responses, the digital nanopillar SERS assay achieves both highly specific and highly sensitive cytokine detection down to attomolar level. Significantly, we report the capability of the assay to longitudinally monitor 10 melanoma patients during immune inhibitor blockade treatment. Here, we show that elevated cytokine concentrations predict for higher risk of developing severe immune toxicities in our pilot cohort of patients.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Spectrum Analysis, Raman / Monitoring, Immunologic / Immunotherapy / Melanoma Type of study: Cohort study / Diagnostic study / Observational study / Prognostic study Limits: Humans Language: English Journal: Nat Commun Journal subject: Biology / Science Year: 2021 Document Type: Article Affiliation country: S41467-021-21431-w

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Spectrum Analysis, Raman / Monitoring, Immunologic / Immunotherapy / Melanoma Type of study: Cohort study / Diagnostic study / Observational study / Prognostic study Limits: Humans Language: English Journal: Nat Commun Journal subject: Biology / Science Year: 2021 Document Type: Article Affiliation country: S41467-021-21431-w