Your browser doesn't support javascript.
Surface Plasmon Resonance (SPR)- and Localized SPR (LSPR)-Based Virus Sensing Systems: Optical Vibration of Nano- and Micro-Metallic Materials for the Development of Next-Generation Virus Detection Technology.
Takemura, Kenshin.
  • Takemura K; Sensing System Research Center, The National Institute of Advanced Industrial Science and Technology, 07-1 Shuku-Machi, Tosu 841-0052, Japan.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1354921
ABSTRACT
The global damage that a widespread viral infection can cause is evident from the ongoing COVID-19 pandemic. The importance of virus detection to prevent the spread of viruses has been reaffirmed by the pandemic and the associated social and economic damage. Surface plasmon resonance (SPR) in microscale and localized SPR (LSPR) in nanoscale virus sensing systems are thought to be useful as next-generation detection methods. Many studies have been conducted on ultra-sensitive technologies, especially those based on signal amplification. In some cases, it has been reported that even a low viral load can be measured, indicating that the virus can be detected in patients even in the early stages of the viral infection. These findings corroborate that SPR and LSPR are effective in minimizing false-positives and false-negatives that are prevalent in the existing virus detection techniques. In this review, the methods and signal responses of SPR and LSPR-based virus detection technologies are summarized. Furthermore, this review surveys some of the recent developments reported and discusses the limitations of SPR and LSPR-based virus detection as the next-generation detection technologies.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Virion / Surface Plasmon Resonance / Metal Nanoparticles / SARS-CoV-2 Type of study: Diagnostic study / Observational study Limits: Humans Language: English Year: 2021 Document Type: Article Affiliation country: Bios11080250

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Virion / Surface Plasmon Resonance / Metal Nanoparticles / SARS-CoV-2 Type of study: Diagnostic study / Observational study Limits: Humans Language: English Year: 2021 Document Type: Article Affiliation country: Bios11080250