Your browser doesn't support javascript.
VIVID: In Vivo End-to-End Molecular Communication Model for COVID-19.
Pal, Saswati; Islam, Nabiul; Misra, Sudip.
  • Pal S; School of Nano-Science and TechnologyIndian Institute of Technology Kharagpur Kharagpur 721302 India.
  • Islam N; Telecommunications Software and Systems GroupWaterford Institute of Technology Waterford X91 WR86 Ireland.
  • Misra S; Department of Computer Science and EngineeringIndian Institute of Technology Kharagpur Kharagpur 721302 India.
IEEE Trans Mol Biol Multiscale Commun ; 7(3): 142-152, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1365032
ABSTRACT
As an alternative to ongoing efforts for vaccine development, scientists are exploring novel approaches to provide innovative therapeutics, such as nanoparticle- and stem cell-based treatments. Thus, understanding the transmission and propagation dynamics of coronavirus inside the respiratory system has attracted researchers' attention. In this work, we model the transmission and propagation of coronavirus inside the respiratory tract, starting from the nasal area to alveoli using molecular communication theory. We performed experiments using COMSOL, a finite-element multiphysics simulation software, and Python-based simulations to analyze the end-to-end communication model in terms of path loss, delay, and gain. The analytical results show the correlation between the channel characteristics and pathophysiological properties of coronavirus. For the initial 50% of the maximum production rate of virus particles, the path loss increases more than 16 times than the remaining 50%. The delayed response of the immune system and increase in the absorption of virus particles inside the respiratory tract delay the arrival of virus particles at the alveoli. Furthermore, the results reveal that the virus load is more in case of asthmatic patients as compared to the normal subjects.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Topics: Vaccines Language: English Journal: IEEE Trans Mol Biol Multiscale Commun Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Topics: Vaccines Language: English Journal: IEEE Trans Mol Biol Multiscale Commun Year: 2021 Document Type: Article