Your browser doesn't support javascript.
Spectral and time-resolved photoluminescence of human platelets doped with platinum nanoparticles.
Matveeva, Karina; Zyubin, Andrey; Demishkevich, Elizaveta; Rafalskiy, Vladimir; Moiseeva, Ekaterina; Kon, Igor; Kundalevich, Anna; Butova, Viktoria; Samusev, Ilia.
  • Matveeva K; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
  • Zyubin A; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
  • Demishkevich E; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
  • Rafalskiy V; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
  • Moiseeva E; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
  • Kon I; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
  • Kundalevich A; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
  • Butova V; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
  • Samusev I; REC «Fundamental and Applied Photonics, Nanophotonics¼, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.
PLoS One ; 16(9): e0256621, 2021.
Article in English | MEDLINE | ID: covidwho-1394545
ABSTRACT
This paper describes a detailed study of spectral and time-resolved photoprocesses in human platelets and their complexes with platinum (Pt) nanoparticles (NPs). Fluorescence, quantum yield, and platelet amino acid lifetime changes in the presence and without femtosecond ablated platinum NPs have been studied. Fluorescence spectroscopy analysis of main fluorescent amino acids and their residues (tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) belonging to the platelet membrane have been performed. The possibility of energy transfer between Pt NPs and the platelet membrane has been revealed. Förster Resonance Energy Transfer (FRET) model was used to perform the quantitative evaluation of energy transfer parameters. The prospects of Pt NPs usage deals with quenching-based sensing for pathology's based on platelet conformations as cardiovascular diseases have been demonstrated.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Platinum / Blood Platelets / Fluorescence Resonance Energy Transfer / Metal Nanoparticles Type of study: Experimental Studies Limits: Adult / Humans Language: English Journal: PLoS One Journal subject: Science / Medicine Year: 2021 Document Type: Article Affiliation country: Journal.pone.0256621

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Platinum / Blood Platelets / Fluorescence Resonance Energy Transfer / Metal Nanoparticles Type of study: Experimental Studies Limits: Adult / Humans Language: English Journal: PLoS One Journal subject: Science / Medicine Year: 2021 Document Type: Article Affiliation country: Journal.pone.0256621