Your browser doesn't support javascript.
A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial.
Liu, Songxiang; Xie, Mao; Zhang, Zhicai; Wu, Xinghuo; Gao, Fei; Lu, Lin; Zhang, Jiayao; Xie, Yi; Yang, Fan; Ye, Zhewei.
  • Liu S; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Xie M; Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Zhang Z; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Wu X; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Gao F; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Lu L; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Zhang J; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Xie Y; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Yang F; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Ye Z; Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
J Med Internet Res ; 23(9): e24081, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1403378
ABSTRACT

BACKGROUND:

The COVID-19 outbreak has now become a pandemic and has had a serious adverse impact on global public health. The effect of COVID-19 on the lungs can be determined through 2D computed tomography (CT) imaging, which requires a high level of spatial imagination on the part of the medical provider.

OBJECTIVE:

The purpose of this study is to determine whether viewing a 3D hologram with mixed reality techniques can improve medical professionals' understanding of the pulmonary lesions caused by COVID-19.

METHODS:

The study involved 60 participants, including 20 radiologists, 20 surgeons, and 20 medical students. Each of the three groups was randomly divided into two groups, either the 2D CT group (n=30; mean age 29 years [range 19-38 years]; males=20) or the 3D holographic group (n=30; mean age 30 years [range 20=38 years]; males=20). The two groups completed the same task, which involved identifying lung lesions caused by COVID-19 for 6 cases using a 2D CT or 3D hologram. Finally, an independent radiology professor rated the participants' performance (out of 100). All participants in two groups completed a Likert scale questionnaire regarding the educational utility and efficiency of 3D holograms. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) was completed by all participants.

RESULTS:

The mean task score of the 3D hologram group (mean 91.98, SD 2.45) was significantly higher than that of the 2D CT group (mean 74.09, SD 7.59; P<.001). With the help of 3D holograms, surgeons and medical students achieved the same score as radiologists and made obvious progress in identifying pulmonary lesions caused by COVID-19. The Likert scale questionnaire results showed that the 3D hologram group had superior results compared to the 2D CT group (teaching 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; understanding and communicating 2D CT group median 1, IQR 1-1 versus 3D group median 5, IQR 5-5; P<.001; increasing interest 2D CT group median 2, IQR 2-2 versus 3D group median 5, IQR 5-5; P<.001; lowering the learning curve 2D CT group median 2, IQR 1-2 versus 3D group median 4, IQR 4-5; P<.001; spatial awareness 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; learning 2D CT group median 3, IQR 2-3 versus 3D group median 5, IQR 5-5; P<.001). The 3D group scored significantly lower than the 2D CT group for the "mental," "temporal," "performance," and "frustration" subscales on the NASA-TLX.

CONCLUSIONS:

A 3D hologram with mixed reality techniques can be used to help medical professionals, especially medical students and newly hired doctors, better identify pulmonary lesions caused by COVID-19. It can be used in medical education to improve spatial awareness, increase interest, improve understandability, and lower the learning curve. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100045845; http//www.chictr.org.cn/showprojen.aspx?proj=125761.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Students, Medical / Augmented Reality / COVID-19 Type of study: Experimental Studies / Observational study / Prognostic study / Randomized controlled trials Limits: Adult / Humans / Male / Young adult Country/Region as subject: North America Language: English Journal: J Med Internet Res Journal subject: Medical Informatics Year: 2021 Document Type: Article Affiliation country: 24081

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Students, Medical / Augmented Reality / COVID-19 Type of study: Experimental Studies / Observational study / Prognostic study / Randomized controlled trials Limits: Adult / Humans / Male / Young adult Country/Region as subject: North America Language: English Journal: J Med Internet Res Journal subject: Medical Informatics Year: 2021 Document Type: Article Affiliation country: 24081