Your browser doesn't support javascript.
Measurement of respiratory rate using wearable devices and applications to COVID-19 detection.
Natarajan, Aravind; Su, Hao-Wei; Heneghan, Conor; Blunt, Leanna; O'Connor, Corey; Niehaus, Logan.
  • Natarajan A; Fitbit Research, San Francisco, CA, USA. anatarajan@google.com.
  • Su HW; Fitbit Research, San Francisco, CA, USA.
  • Heneghan C; Fitbit Research, San Francisco, CA, USA.
  • Blunt L; Fitbit Research, San Francisco, CA, USA.
  • O'Connor C; Fitbit Research, San Francisco, CA, USA.
  • Niehaus L; Fitbit Research, San Francisco, CA, USA.
NPJ Digit Med ; 4(1): 136, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1413237
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
We show that heart rate enabled wearable devices can be used to measure respiratory rate. Respiration modulates the heart rate creating excess power in the heart rate variability at a frequency equal to the respiratory rate, a phenomenon known as respiratory sinus arrhythmia. We isolate this component from the power spectral density of the heart beat interval time series, and show that the respiratory rate thus estimated is in good agreement with a validation dataset acquired from sleep studies (root mean squared error = 0.648 min-1, mean absolute error = 0.46 min-1, mean absolute percentage error = 3%). We use this respiratory rate algorithm to illuminate two potential applications (a) understanding the distribution of nocturnal respiratory rate as a function of age and sex, and (b) examining changes in longitudinal nocturnal respiratory rate due to a respiratory infection such as COVID-19. 90% of respiratory rate values for healthy adults fall within the range 11.8-19.2 min-1 with a mean value of 15.4 min-1. Respiratory rate is shown to increase with nocturnal heart rate. It also varies with BMI, reaching a minimum at 25 kg/m2, and increasing for lower and higher BMI. The respiratory rate decreases slightly with age and is higher in females compared to males for age <50 years, with no difference between females and males thereafter. The 90% range for the coefficient of variation in a 14 day period for females (males) varies from 2.3-9.2% (2.3-9.5%) for ages 20-24 yr, to 2.5-16.8% (2.7-21.7%) for ages 65-69 yr. We show that respiratory rate is often elevated in subjects diagnosed with COVID-19. In a 7 day window from D-1 to D+5 (where D0 is the date when symptoms first present, for symptomatic individuals, and the test date for asymptomatic cases), we find that 36.4% (23.7%) of symptomatic (asymptomatic) individuals had at least one measurement of respiratory rate 3 min-1 higher than the regular rate.

Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Prognostic study Language: English Journal: NPJ Digit Med Year: 2021 Document Type: Article Affiliation country: S41746-021-00493-6

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Prognostic study Language: English Journal: NPJ Digit Med Year: 2021 Document Type: Article Affiliation country: S41746-021-00493-6