Your browser doesn't support javascript.
Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2.
Rather, Irfan A; Choi, Sy-Bing; Kamli, Majid Rasool; Hakeem, Khalid Rehman; Sabir, Jamal S M; Park, Yong-Ha; Hor, Yan-Yan.
  • Rather IA; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Choi SB; Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Wilayah Persekutuan, Kuala Lumpur 50490, Malaysia.
  • Kamli MR; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Hakeem KR; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Sabir JSM; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Park YH; Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk-do, Korea.
  • Hor YY; Probionic Corporation Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Korea.
Vaccines (Basel) ; 9(10)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438760
ABSTRACT
In response to the ongoing COVID-19 pandemic, the global effort to develop high efficacy countermeasures to control the infection are being conducted at full swing. While the efficacy of vaccines and coronavirus drugs are being tested, the microbiome approach represents an alternative pathophysiology-based approach to prevent the severity of the infection. In the current study, we evaluated the action of a novel probiotic Lactobacillus plantarum Probio-88 against SARS-COV-2 replication and immune regulation using an in vitro and in silico study. The results showed that extract from this strain (P88-CFS) significantly inhibited the replication of SARS-COV-2 and the production of reactive oxygen species (ROS) levels. Furthermore, compared with infected cells, P88-CFS treated cells showed a significant reduction in inflammatory markers such as IFN-α, IFN-ß, and IL-6. Using an in silico molecular docking approach, it was postulated that the antiviral activity of L. plantarum Probio-88 was derived from plantaricin E (PlnE) and F (PlnF). The high binding affinity and formation of hydrogen bonding indicated that the association of PlnE and PlnF on SARS-COV-2 helicase might serve as a blocker by preventing the binding of ss-RNA during the replication of the virus. In conclusion, our study substantiated that P88-CFS could be used as an integrative therapeutic approach along with vaccine to contain the spread of the highly infectious pathogen and possibly its variants.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Prognostic study Topics: Vaccines / Variants Language: English Year: 2021 Document Type: Article Affiliation country: Vaccines9101067

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Prognostic study Topics: Vaccines / Variants Language: English Year: 2021 Document Type: Article Affiliation country: Vaccines9101067