Your browser doesn't support javascript.
Turn Up the Lights, Leave them On and Shine them All Around-Numerical Simulations Point the Way to more Efficient Use of Far-UVC Lights for the Inactivation of Airborne Coronavirus.
Wood, Kenneth; Wood, Andrew; Peñaloza, Camilo; Eadie, Ewan.
  • Wood K; SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, UK.
  • Wood A; Fluid Gravity Engineering, St Andrews, UK.
  • Peñaloza C; SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, UK.
  • Eadie E; NHS Tayside, Photobiology Unit, Ninewells Hospital and Medical School, Dundee, UK.
Photochem Photobiol ; 98(2): 471-483, 2022 03.
Article in English | MEDLINE | ID: covidwho-1441853
ABSTRACT
It has been demonstrated in laboratory environments that ultraviolet-C (UVC) light is effective at inactivating airborne viruses. However, due to multiple parameters, it cannot be assumed that the air inside a room will be efficiently disinfected by commercial germicidal ultraviolet (GUV) systems. This research utilizes numerical simulations of airflow, viral spread, inactivation by UVC and removal by mechanical ventilation in a typical classroom. The viral load in the classroom is compared for conventional upper-room GUV and the emerging "Far-UVC." In our simulated environment, GUV is shown to be effective in both well and poorly ventilated rooms, with greatest benefit in the latter. At current exposure limits, 18 commercial Far-UVC systems were as effective at reducing viral load as a single upper-room GUV. Improvements in Far-UVC irradiation distribution and recently proposed increases to exposure limits would dramatically increase the efficacy of Far-UVC devices. Modifications to current Far-UVC devices, which would improve their real-world efficacy, could be implemented now without requiring legislative change. The prospect of increased safety limits coupled with our suggested technological modifications could usher in a new era of safe and rapid whole room air disinfection in occupied indoor spaces.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Limits: Humans Language: English Journal: Photochem Photobiol Year: 2022 Document Type: Article Affiliation country: Php.13523

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Limits: Humans Language: English Journal: Photochem Photobiol Year: 2022 Document Type: Article Affiliation country: Php.13523