Your browser doesn't support javascript.
Global Prevalence of Adaptive and Prolonged Infections' Mutations in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein.
Lennerstrand, Johan; Palanisamy, Navaneethan.
  • Lennerstrand J; Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, 751 85 Uppsala, Sweden.
  • Palanisamy N; Chester Medical School, University of Chester, Chester CH2 1BR, UK.
Viruses ; 13(10)2021 09 30.
Article in English | MEDLINE | ID: covidwho-1444332
ABSTRACT
Several vaccines with varying efficacies have been developed and are currently administered globally to minimize the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite having an RNA-dependent RNA polymerase with a proofreading activity, new variants of SARS-CoV-2 are on the rise periodically. Some of the mutations in these variants, especially mutations on the spike protein, aid the virus in transmission, infectivity and host immune evasion. Further, these mutations also reduce the effectiveness of some of the current vaccines and monoclonal antibodies (mAbs). In the present study, using the available 984,769 SARS-CoV-2 nucleotide sequences on the NCBI database from the end of 2019 till 28 July 2021, we have estimated the global prevalence of so-called 'adaptive mutations' and 'mutations identified in the prolonged infections', in the receptor-binding domain (RBD) of the spike (S) protein. Irrespective of the geographical region, in the case of the adaptive mutations, N501Y (48.38%) was found to be the dominant mutation followed by L452R (17.52%), T478K (14.31%), E484K (4.69%), S477N (3.29%), K417T (1.64%), N439K (0.7%) and S494P (0.7%). Other mutations were found to be less prevalent (less than 0.7%). Since the last two months, there has been a massive increase of L452R and T478K mutations (delta variant) in certain areas. In the case of prolonged infections' mutations (long-term SARS-CoV-2 infections), V483A (0.009%) was found to be dominant followed by Q493R (0.009%), while other mutations were found in less than 0.007% of the studied sequences. The data obtained in this study will aid in the development of better infection control policies, thereby curbing the spread of this virus.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Spike Glycoprotein, Coronavirus / SARS-CoV-2 / COVID-19 Type of study: Observational study Topics: Vaccines / Variants Limits: Humans Language: English Year: 2021 Document Type: Article Affiliation country: V13101974

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Spike Glycoprotein, Coronavirus / SARS-CoV-2 / COVID-19 Type of study: Observational study Topics: Vaccines / Variants Limits: Humans Language: English Year: 2021 Document Type: Article Affiliation country: V13101974