Your browser doesn't support javascript.
Material Basis and Mechanism of Chansu Injection for COVID-19 Treatment Based on Network Pharmacology and Molecular Docking Technology.
Xu, Yong; Peng, Wenpan; Han, Di; Wang, Zhichao; Feng, Fanchao; Zhou, Xianmei; Wu, Qi.
  • Xu Y; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
  • Peng W; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
  • Han D; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
  • Wang Z; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
  • Feng F; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
  • Zhou X; Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
  • Wu Q; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
Evid Based Complement Alternat Med ; 2021: 7697785, 2021.
Article in English | MEDLINE | ID: covidwho-1463062
ABSTRACT

PURPOSE:

The clinical efficacy of Chansu injection for COVID-19 treatment has been confirmed. Its mechanism of action remains unclear. We used network pharmacology and molecular docking technology to explore the potential material basis and mechanism of action of Chansu injection for COVID-19.

METHODS:

The main components of Chansu injection were determined using HPLC. The PharmMapper, SwissTargetPrediction, SEA, and TCMID databases were used to screen for the active ingredients and therapeutic targets of Chansu injection, while the OMIM and GeneCards Suite databases were used to search for COVID-19-related targets. The STRING database was used for protein-protein interaction (PPI) network construction and topological analysis, while DAVID was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the core targets. The main active compounds of Chansu injection were docked with 3CL protease, ACE2, RdRp, and spike protein.

RESULTS:

The three Chansu injection compounds were identified using HPLC. A total of 236 drug-related targets and 16,611 disease-related targets were identified, and 77 common targets were determined through mapping. The PPI mapping results revealed that 16 core targets were obtained through topological analysis and screening. Furthermore, GO and KEGG pathway enrichment analyses revealed that the PI3K and JAK-STAT signaling pathways are the major pathways. The molecular docking results suggest that the three Chansu injection components have high binding energies to the S protein.

CONCLUSIONS:

The potential mechanism of Chansu injection for COVID-19 involves multiple targets and pathways, thereby providing a scientific basis for its clinical application and further research.

Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Language: English Journal: Evid Based Complement Alternat Med Year: 2021 Document Type: Article Affiliation country: 2021

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Language: English Journal: Evid Based Complement Alternat Med Year: 2021 Document Type: Article Affiliation country: 2021