Your browser doesn't support javascript.
A machine-learning parsimonious multivariable predictive model of mortality risk in patients with Covid-19.
Murri, Rita; Lenkowicz, Jacopo; Masciocchi, Carlotta; Iacomini, Chiara; Fantoni, Massimo; Damiani, Andrea; Marchetti, Antonio; Sergi, Paolo Domenico Angelo; Arcuri, Giovanni; Cesario, Alfredo; Patarnello, Stefano; Antonelli, Massimo; Bellantone, Rocco; Bernabei, Roberto; Boccia, Stefania; Calabresi, Paolo; Cambieri, Andrea; Cauda, Roberto; Colosimo, Cesare; Crea, Filippo; De Maria, Ruggero; De Stefano, Valerio; Franceschi, Francesco; Gasbarrini, Antonio; Parolini, Ornella; Richeldi, Luca; Sanguinetti, Maurizio; Urbani, Andrea; Zega, Maurizio; Scambia, Giovanni; Valentini, Vincenzo.
  • Murri R; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy. rita.murri@policlinicogemelli.it.
  • Lenkowicz J; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Masciocchi C; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Iacomini C; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Fantoni M; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Damiani A; Università Cattolica Sacro Cuore, Rome, Italy.
  • Marchetti A; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Sergi PDA; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Arcuri G; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Cesario A; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Patarnello S; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Antonelli M; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Bellantone R; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Bernabei R; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Boccia S; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Calabresi P; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Cambieri A; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Cauda R; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Colosimo C; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Crea F; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • De Maria R; Università Cattolica Sacro Cuore, Rome, Italy.
  • De Stefano V; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Franceschi F; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Gasbarrini A; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Parolini O; Università Cattolica Sacro Cuore, Rome, Italy.
  • Richeldi L; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Sanguinetti M; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Urbani A; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Zega M; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Scambia G; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
  • Valentini V; Sezione di Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
Sci Rep ; 11(1): 21136, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1493228
ABSTRACT
The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help to identify patients with COVID-19 who are at higher risk of death. The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of fivefold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk score group), the case-fatality rate was 1.6%, 17.8% in the second and third quartile (high-risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score groups showed good discrimination for the P/F value at admission, and a positive correlation was found for the low-risk class to P/F at 48 h after admission (adjusted R-squared = 0.48). We developed a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction applicable for patients in the Emergency Department, or during hospitalization. Although it is reasonable to assume that the model is also applicable in not-hospitalized persons, only appropriate studies can assess the accuracy of the model also for persons at home.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Document Type: Article Main subject: Pandemics / Machine Learning / SARS-CoV-2 / COVID-19 Subject: Pandemics / Machine Learning / SARS-CoV-2 / COVID-19 Type of study: Etiology study / Incidence study / Observational study / Prognostic study / Risk factors Language: English Journal: Sci Rep Clinical aspect: Etiology / Prediction / Prognosis Year: 2021

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Document Type: Article Main subject: Pandemics / Machine Learning / SARS-CoV-2 / COVID-19 Subject: Pandemics / Machine Learning / SARS-CoV-2 / COVID-19 Type of study: Etiology study / Incidence study / Observational study / Prognostic study / Risk factors Language: English Journal: Sci Rep Clinical aspect: Etiology / Prediction / Prognosis Year: 2021
...