Your browser doesn't support javascript.
Automated Medical Care: Bradycardia Detection and Cardiac Monitoring of Preterm Infants.
Arvinti, Beatrice; Iacob, Emil Radu; Isar, Alexandru; Iacob, Daniela; Costache, Marius.
  • Arvinti B; Fundamentals of Physics for Engineers Department, "Politehnica" University Timisoara, Bd. Vasile Pârvan 2, 300223 Timisoara, Romania.
  • Iacob ER; Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania.
  • Isar A; Faculty of Electronics, Telecommunications and Information Technologies, "Politehnica" University Timisoara, Bd. Vasile Pârvan 2, 300223 Timisoara, Romania.
  • Iacob D; Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania.
  • Costache M; Fundamentals of Physics for Engineers Department, "Politehnica" University Timisoara, Bd. Vasile Pârvan 2, 300223 Timisoara, Romania.
Medicina (Kaunas) ; 57(11)2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1502464
ABSTRACT
Background and

Objectives:

Prematurity of birth occurs before the 37th week of gestation and affects up to 10% of births worldwide. It is correlated with critical outcomes; therefore, constant monitoring in neonatal intensive care units or home environments is required. The aim of this work was to develop solutions for remote neonatal intensive supervision systems, which should assist medical diagnosis of premature infants and raise alarm at cardiac abnormalities, such as bradycardia. Additionally, the COVID-19 pandemic has put a worldwide stress upon the medical staff and the management of healthcare units. Materials and

Methods:

A traditional medical diagnosing scheme was set up, implemented with the aid of powerful mathematical operators. The algorithm was tailored to the infants' personal ECG characteristics and was tested on real ECG data from the publicly available PhysioNet database "Preterm Infant Cardio-Respiratory Signals Database". Different processing problems were solved noise filtering, baseline drift removal, event detection and compression of medical data using the à trous wavelet transform.

Results:

In all 10 available clinical cases, the bradycardia events annotated by the physicians were correctly detected using the RR intervals. Compressing the ECG signals for remote transmission, we obtained compression ratios (CR) varying from 1.72 to 7.42, with the median CR value around 3.

Conclusions:

We noticed that a significant amount of noise can be added to a signal while monitoring using standard clinical sensors. We tried to offer solutions for these technical problems. Recent studies have shown that persons infected with the COVID-19 disease are frequently reported to develop cardiovascular symptoms and cardiac arrhythmias. An automatic surveillance system (both for neonates and adults) has a practical medical application. The proposed algorithm is personalized, no fixed reference value being applied, and the algorithm follows the neonate's cardiac rhythm changes. The performance depends on the characteristics of the input ECG. The signal-to-noise ratio of the processed ECG was improved, with a value of up to 10 dB.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Bradycardia / COVID-19 Type of study: Diagnostic study / Prognostic study Limits: Adult / Humans / Infant / Infant, Newborn Language: English Journal subject: Medicine Year: 2021 Document Type: Article Affiliation country: Medicina57111199

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Bradycardia / COVID-19 Type of study: Diagnostic study / Prognostic study Limits: Adult / Humans / Infant / Infant, Newborn Language: English Journal subject: Medicine Year: 2021 Document Type: Article Affiliation country: Medicina57111199