Your browser doesn't support javascript.
In-solution buffer-free digestion allows full-sequence coverage and complete characterization of post-translational modifications of the receptor-binding domain of SARS-CoV-2 in a single ESI-MS spectrum.
Espinosa, Luis Ariel; Ramos, Yassel; Andújar, Ivan; Torres, Enso Onill; Cabrera, Gleysin; Martín, Alejandro; Roche, Diamilé; Chinea, Glay; Becquet, Mónica; González, Isabel; Canaán-Haden, Camila; Nelson, Elías; Rojas, Gertrudis; Pérez-Massón, Beatriz; Pérez-Martínez, Dayana; Boggiano, Tamy; Palacio, Julio; Lozada Chang, Sum Lai; Hernández, Lourdes; de la Luz Hernández, Kathya Rashida; Markku, Saloheimo; Vitikainen, Marika; Valdés-Balbín, Yury; Santana-Medero, Darielys; Rivera, Daniel G; Vérez-Bencomo, Vicente; Emalfarb, Mark; Tchelet, Ronen; Guillén, Gerardo; Limonta, Miladys; Pimentel, Eulogio; Ayala, Marta; Besada, Vladimir; González, Luis Javier.
  • Espinosa LA; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Ramos Y; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Andújar I; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Torres EO; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Cabrera G; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Martín A; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Roche D; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Chinea G; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Becquet M; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • González I; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Canaán-Haden C; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Nelson E; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Rojas G; Center of Molecular Immunology, 216 St., P.O. Box 16040, Havana, Cuba.
  • Pérez-Massón B; Center of Molecular Immunology, 216 St., P.O. Box 16040, Havana, Cuba.
  • Pérez-Martínez D; Center of Molecular Immunology, 216 St., P.O. Box 16040, Havana, Cuba.
  • Boggiano T; Center of Molecular Immunology, 216 St., P.O. Box 16040, Havana, Cuba.
  • Palacio J; Center of Molecular Immunology, 216 St., P.O. Box 16040, Havana, Cuba.
  • Lozada Chang SL; Center of Molecular Immunology, 216 St., P.O. Box 16040, Havana, Cuba.
  • Hernández L; Center of Molecular Immunology, 216 St., P.O. Box 16040, Havana, Cuba.
  • de la Luz Hernández KR; Center of Molecular Immunology, 216 St., P.O. Box 16040, Havana, Cuba.
  • Markku S; VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT, Espoo, Finland.
  • Vitikainen M; VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT, Espoo, Finland.
  • Valdés-Balbín Y; Finlay Vaccine Institute, 200 and 21 Street, 11600, Havana, Cuba.
  • Santana-Medero D; Finlay Vaccine Institute, 200 and 21 Street, 11600, Havana, Cuba.
  • Rivera DG; Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, 10400, Havana, Cuba.
  • Vérez-Bencomo V; Finlay Vaccine Institute, 200 and 21 Street, 11600, Havana, Cuba.
  • Emalfarb M; Dyadic International, Inc, 140 Intercoastal Pointe Drive, Suite #404, Jupiter, FL, 33477, USA.
  • Tchelet R; Dyadic International, Inc, 140 Intercoastal Pointe Drive, Suite #404, Jupiter, FL, 33477, USA.
  • Guillén G; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Limonta M; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Pimentel E; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Ayala M; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • Besada V; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba.
  • González LJ; Center for Genetic Engineering and Biotechnology, Ave 31, e/ 158 y 190, Cubanacán, Playa, Havana, Cuba. luis.javier@cigb.edu.cu.
Anal Bioanal Chem ; 413(30): 7559-7585, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1503906
ABSTRACT
Subunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 provide one of the most promising strategies to fight the COVID-19 pandemic. The detailed characterization of the protein primary structure by mass spectrometry (MS) is mandatory, as described in ICHQ6B guidelines. In this work, several recombinant RBD proteins produced in five expression systems were characterized using a non-conventional protocol known as in-solution buffer-free digestion (BFD). In a single ESI-MS spectrum, BFD allowed very high sequence coverage (≥ 99%) and the detection of highly hydrophilic regions, including very short and hydrophilic peptides (2-8 amino acids), and the His6-tagged C-terminal peptide carrying several post-translational modifications at Cys538 such as cysteinylation, homocysteinylation, glutathionylation, truncated glutathionylation, and cyanylation, among others. The analysis using the conventional digestion protocol allowed lower sequence coverage (80-90%) and did not detect peptides carrying most of the above-mentioned PTMs. The two C-terminal peptides of a dimer [RBD(319-541)-(His)6]2 linked by an intermolecular disulfide bond (Cys538-Cys538) with twelve histidine residues were only detected by BFD. This protocol allows the detection of the four disulfide bonds present in the native RBD, low-abundance scrambling variants, free cysteine residues, O-glycoforms, and incomplete processing of the N-terminal end, if present. Artifacts generated by the in-solution BFD protocol were also characterized. BFD can be easily implemented; it has been applied to the characterization of the active pharmaceutical ingredient of two RBD-based vaccines, and we foresee that it can be also helpful to the characterization of mutated RBDs.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Peptide Fragments / Protein Processing, Post-Translational / Spectrometry, Mass, Electrospray Ionization / Cysteine / Spike Glycoprotein, Coronavirus Topics: Vaccines / Variants Limits: Humans Language: English Journal: Anal Bioanal Chem Year: 2021 Document Type: Article Affiliation country: S00216-021-03721-w

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Peptide Fragments / Protein Processing, Post-Translational / Spectrometry, Mass, Electrospray Ionization / Cysteine / Spike Glycoprotein, Coronavirus Topics: Vaccines / Variants Limits: Humans Language: English Journal: Anal Bioanal Chem Year: 2021 Document Type: Article Affiliation country: S00216-021-03721-w