Your browser doesn't support javascript.
Carbon dioxide inhibits COVID-19-type proinflammatory responses through extracellular signal-regulated kinases 1 and 2, novel carbon dioxide sensors.
Galganska, Hanna; Jarmuszkiewicz, Wieslawa; Galganski, Lukasz.
  • Galganska H; Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
  • Jarmuszkiewicz W; Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland. wieslawa.jarmuszkiewicz@amu.edu.pl.
  • Galganski L; Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland. lukasz.galganski@amu.edu.pl.
Cell Mol Life Sci ; 78(24): 8229-8242, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1503964
ABSTRACT
Mitogen-activated protein kinase (MAPK) signalling pathways are crucial for developmental processes, oncogenesis, and inflammation, including the production of proinflammatory cytokines caused by reactive oxygen species and upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are no drugs that can effectively prevent excessive inflammatory responses in endothelial cells in the lungs, heart, brain, and kidneys, which are considered the main causes of severe coronavirus disease 2019 (COVID-19). In this work, we demonstrate that human MAPKs, i.e. extracellular signal-regulated kinases 1 and 2 (ERK1/2), are CO2 sensors and CO2 is an efficient anti-inflammatory compound that exerts its effects through inactivating ERK1/2 in cultured endothelial cells when the CO2 concentration is elevated. CO2 is a potent inhibitor of cellular proinflammatory responses caused by H2O2 or the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. ERK1/2 activated by the combined action of RBD and cytokines crucial for the development of severe COVID-19, i.e. interferon-gamma (IFNγ) and tumour necrosis factor-α (TNFα), are more effectively inactivated by CO2 than by dexamethasone or acetylsalicylic acid in human bronchial epithelial cells. Previously, many preclinical and clinical studies showed that the transient application of 5-8% CO2 is safe and effective in the treatment of many diseases. Therefore, our research indicates that CO2 may be used for the treatment of COVID-19 as well as the modification of hundreds of cellular pathways.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Carbon Dioxide / Mitogen-Activated Protein Kinase 1 / Mitogen-Activated Protein Kinase 3 / COVID-19 Drug Treatment / Anti-Inflammatory Agents Type of study: Prognostic study Limits: Humans Language: English Journal: Cell Mol Life Sci Journal subject: Molecular Biology Year: 2021 Document Type: Article Affiliation country: S00018-021-04005-3

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Carbon Dioxide / Mitogen-Activated Protein Kinase 1 / Mitogen-Activated Protein Kinase 3 / COVID-19 Drug Treatment / Anti-Inflammatory Agents Type of study: Prognostic study Limits: Humans Language: English Journal: Cell Mol Life Sci Journal subject: Molecular Biology Year: 2021 Document Type: Article Affiliation country: S00018-021-04005-3