Your browser doesn't support javascript.
Surface adsorption and survival of SARS-CoV-2 on frozen meat
IOP Conference Series. Earth and Environmental Science ; 854(1), 2021.
Article in English | ProQuest Central | ID: covidwho-1506969
ABSTRACT
The first case of a severe acute respiratory syndrome caused by coronavirus-2 was reported in December 2019 in China. The disease spread globally quickly, causing the 2019–2021 COVID-19 pandemic. The meat industry became concerned over the possibility of transmitting the virus in the slaughterhouse environment. The level of air exchange strongly affects the distribution of SARS-CoV-2 aerosols within the slaughterhouses. The adsorption of the SARS-CoV-2 virus on the surface of the frozen meat is dictated mainly by the interplay of electrostatic forces between the virion and tissue (pH) and environmental conditions (temperature and humidity) in the vicinity of adsorption micro-location. Suppose the virus contaminates the meat surface, whereby pH is 5.5 or less. In that case, it firmly adsorbs due to bonds established by protonated amine group and a hydrogen bond between the COOH group of the viral protein and oxygen in hydroxyl groups present on meat surfaces. The meat surface, coated with a thin water film, interacts with the SARS-CoV-2 virions by establishing strong hydrogen bonds. Although there is no proof of COVID-19 contraction by food consumption, the strong surface adsorption and ability of SARS-CoV-2 to survive meat freezing indicate a potential risk of virus transmission by meat.

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Prognostic study Language: English Journal: IOP Conference Series. Earth and Environmental Science Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Prognostic study Language: English Journal: IOP Conference Series. Earth and Environmental Science Year: 2021 Document Type: Article