Your browser doesn't support javascript.
Newly designed analogues from SARS-CoV inhibitors mimicking the druggable properties against SARS-CoV-2 and its novel variants.
Ferdous, Nadim; Reza, Mahjerin Nasrin; Islam, Md Shariful; Hossain Emon, Md Tabassum; Mohiuddin, A K M; Hossain, Mohammad Uzzal.
  • Ferdous N; Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University Santosh Tangail-1902 Bangladesh.
  • Reza MN; Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University Santosh Tangail-1902 Bangladesh.
  • Islam MS; Department of Biology, University of Kentucky 101 T.H. Morgan Building Lexington KY 40506-022 USA.
  • Hossain Emon MT; Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University Santosh Tangail-1902 Bangladesh.
  • Mohiuddin AKM; Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University Santosh Tangail-1902 Bangladesh.
  • Hossain MU; Bioinformatics Division, National Institute of Biotechnology Ganakbari, Ashulia, Savar Dhaka-1349 Bangladesh uzzalbge10044@gmail.com.
RSC Adv ; 11(50): 31460-31476, 2021 Sep 21.
Article in English | MEDLINE | ID: covidwho-1510630
ABSTRACT
The emerging variants of SARS coronavirus-2 (SARS-CoV-2) have been continuously spreading all over the world and have raised global health concerns. The B.1.1.7 (United Kingdom), P.1 (Brazil), B.1.351 (South Africa) and B.1.617 (India) variants, resulting from multiple mutations in the spike glycoprotein (SGp), are resistant to neutralizing antibodies and enable increased transmission. Hence, new drugs might be of great importance against the novel variants of SARS-CoV-2. The SGp and main protease (Mpro) of SARS-CoV-2 are important targets for designing and developing antiviral compounds for new drug discovery. In this study, we selected seventeen phytochemicals and later performed molecular docking to determine the binding interactions of the compounds with the two receptors and calculated several drug-likeliness properties for each compound. Luteolin, myricetin and quercetin demonstrated higher affinity for both the proteins and interacted efficiently. To obtain compounds with better properties, we designed three analogues from these compounds and showed their greater druggable properties compared to the parent compounds. Furthermore, we found that the analogues bind to the residues of both proteins, including the recently identified novel variants of SARS-CoV-2. The binding study was further verified by molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) approaches by assessing the stability of the complexes. MD simulations revealed that Arg457 of SGp and Met49 of Mpro are the most important residues that interacted with the designed inhibitors. Our analysis may provide some breakthroughs to develop new therapeutics to treat the proliferation of SARS-CoV-2 in vitro and in vivo.

Full text: Available Collection: International databases Database: MEDLINE Topics: Variants Language: English Journal: RSC Adv Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Topics: Variants Language: English Journal: RSC Adv Year: 2021 Document Type: Article