Your browser doesn't support javascript.
Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China.
Gu, Yao; Liu, Baoshuang; Dai, Qili; Zhang, Yufen; Zhou, Ming; Feng, Yinchang; Hopke, Philip K.
  • Gu Y; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative La
  • Liu B; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative La
  • Dai Q; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative La
  • Zhang Y; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative La
  • Zhou M; State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Feng Y; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative La
  • Hopke PK; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA.
Environ Int ; 158: 106979, 2022 01.
Article in English | MEDLINE | ID: covidwho-1517151
ABSTRACT
Ambient concentrations of volatile organic compounds (VOCs) vary with emission rates, meteorology, and chemistry. Conventional positive matrix factorization (PMF) loses information because of dilution variations and chemical losses. Multiply improved PMF incorporates the ventilation coefficient, and total solar radiation or oxidants to reduce the effects of dispersion and chemical loss. These methods were applied to hourly speciated VOC data from November 2019 to March 2020 including during the COVID-19 shutdown. Various comparisons were made to assess the influences of these fluctuation drivers by time of day. Dispersion normalized PMF (DN-PMF) reduced the dispersion variations. Dispersion-radiation normalized PMF (DRN-PMF) reduced the impact of chemical loss, especially at night, which was better than Dispersion-Ox normalized PMF (DON-PMF). The conditional bivariate probability function (CBPF) plots of DRN-PMF results were consist with actual source locations. The DN-PMF, DRN-PMF, and DON-PMF results were consistent between 1000 and 1500, suggesting dispersion was significantly more influential than photochemical reactions during these times. The DRN-PMF results indicated that the highest VOC contributors during the COVID-19 shutdown were liquefied petroleum gas (LPG) (28.8%), natural gas (25.2%), and pulverized coal boilers emissions (19.6%). Except for petrochemical-related enterprises and LPG, the contribution concentrations of all other sources decreased substantially during the COVID-19 shutdown, by 94.7%, 90.6%, and 86.8% for vehicle emissions, gasoline evaporation, and the mixed source of diesel evaporation and solvent use, respectively. Controlling the use of motor vehicles and related volatilization of diesel fuel and gasoline can be effective in controlling VOCs in the future.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Air Pollutants / Volatile Organic Compounds / COVID-19 Topics: Variants Limits: Humans Country/Region as subject: Asia Language: English Journal: Environ Int Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Air Pollutants / Volatile Organic Compounds / COVID-19 Topics: Variants Limits: Humans Country/Region as subject: Asia Language: English Journal: Environ Int Year: 2022 Document Type: Article