Your browser doesn't support javascript.
Bemcentinib and Gilteritinib Inhibit Cell Growth and Impair the Endo-Lysosomal and Autophagy Systems in an AXL-Independent Manner.
Zdzalik-Bielecka, Daria; Kozik, Kamila; Poswiata, Agata; Jastrzebski, Kamil; Jakubik, Marta; Miaczynska, Marta.
  • Zdzalik-Bielecka D; Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
  • Kozik K; Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
  • Poswiata A; Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
  • Jastrzebski K; Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
  • Jakubik M; Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
  • Miaczynska M; Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
Mol Cancer Res ; 20(3): 446-455, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1518187
ABSTRACT
AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest-specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anticancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of patients with cancer and COVID-19 underscores the need to better characterize the cellular effects of AXL targeting.In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. IMPLICATIONS Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Pyrazines / Triazoles / Benzocycloheptenes / Proto-Oncogene Proteins / Receptor Protein-Tyrosine Kinases / Protein Kinase Inhibitors / Aniline Compounds / Lysosomes Type of study: Experimental Studies / Prognostic study Limits: Humans Language: English Journal: Mol Cancer Res Journal subject: Molecular Biology / Neoplasms Year: 2022 Document Type: Article Affiliation country: 1541-7786.MCR-21-0444

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Pyrazines / Triazoles / Benzocycloheptenes / Proto-Oncogene Proteins / Receptor Protein-Tyrosine Kinases / Protein Kinase Inhibitors / Aniline Compounds / Lysosomes Type of study: Experimental Studies / Prognostic study Limits: Humans Language: English Journal: Mol Cancer Res Journal subject: Molecular Biology / Neoplasms Year: 2022 Document Type: Article Affiliation country: 1541-7786.MCR-21-0444