Your browser doesn't support javascript.
Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication.
Low, Zheng Yao; Yip, Ashley Jia Wen; Lal, Sunil K.
  • Low ZY; School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia.
  • Yip AJW; School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia.
  • Lal SK; School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia; Tropical Medicine and Biology Platform, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia. Electronic address: sunil.lal@monash.edu.
Biochim Biophys Acta Mol Basis Dis ; 1868(2): 166294, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1525694
ABSTRACT
Ivermectin (IVM) is an FDA approved macrocyclic lactone compound traditionally used to treat parasitic infestations and has shown to have antiviral potential from previous in-vitro studies. Currently, IVM is commercially available as a veterinary drug but have also been applied in humans to treat onchocerciasis (river blindness - a parasitic worm infection) and strongyloidiasis (a roundworm/nematode infection). In light of the recent pandemic, the repurposing of IVM to combat SARS-CoV-2 has acquired significant attention. Recently, IVM has been proven effective in numerous in-silico and molecular biology experiments against the infection in mammalian cells and human cohort studies. One promising study had reported a marked reduction of 93% of released virion and 99.98% unreleased virion levels upon administration of IVM to Vero-hSLAM cells. IVM's mode of action centres around the inhibition of the cytoplasmic-nuclear shuttling of viral proteins by disrupting the Importin heterodimer complex (IMPα/ß1) and downregulating STAT3, thereby effectively reducing the cytokine storm. Furthermore, the ability of IVM to block the active sites of viral 3CLpro and S protein, disrupts important machinery such as viral replication and attachment. This review compiles all the molecular evidence to date, in review of the antiviral characteristics exhibited by IVM. Thereafter, we discuss IVM's mechanism and highlight the clinical advantages that could potentially contribute towards disabling the viral replication of SARS-CoV-2. In summary, the collective review of recent efforts suggests that IVM has a prophylactic effect and would be a strong candidate for clinical trials to treat SARS-CoV-2.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Virus Replication / Ivermectin / Drug Repositioning / SARS-CoV-2 / COVID-19 Drug Treatment Type of study: Cohort study / Observational study / Prognostic study Limits: Animals / Humans Language: English Journal: Biochim Biophys Acta Mol Basis Dis Year: 2022 Document Type: Article Affiliation country: J.bbadis.2021.166294

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Virus Replication / Ivermectin / Drug Repositioning / SARS-CoV-2 / COVID-19 Drug Treatment Type of study: Cohort study / Observational study / Prognostic study Limits: Animals / Humans Language: English Journal: Biochim Biophys Acta Mol Basis Dis Year: 2022 Document Type: Article Affiliation country: J.bbadis.2021.166294