Your browser doesn't support javascript.
Activity-based epidemic propagation and contact network scaling in auto-dependent metropolitan areas.
Kumar, Nishant; Oke, Jimi; Nahmias-Biran, Bat-Hen.
  • Kumar N; ETH Zurich, Future Resilient Systems, Singapore-ETH Centre, Singapore, 138602, Singapore.
  • Oke J; Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
  • Nahmias-Biran BH; Department of Civil Engineering, Ariel University, Ariel, 40700, Israel. bathennb@ariel.ac.il.
Sci Rep ; 11(1): 22665, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528026
ABSTRACT
We build on recent work to develop a fully mechanistic, activity-based and highly spatio-temporally resolved epidemiological model which leverages person-trajectories obtained from an activity-based model calibrated for two full-scale prototype cities, consisting of representative synthetic populations and mobility networks for two contrasting auto-dependent city typologies. We simulate the propagation of the COVID-19 epidemic in both cities to analyze spreading patterns in urban networks across various activity types. Investigating the impact of the transit network, we find that its removal dampens disease propagation significantly, suggesting that transit restriction is more critical for mitigating post-peak disease spreading in transit dense cities. In the latter stages of disease spread, we find that the greatest share of infections occur at work locations. A statistical analysis of the resulting activity-based contact networks indicates that transit contacts are scale-free, work contacts are Weibull distributed, and shopping or leisure contacts are exponentially distributed. We validate our simulation results against existing case and mortality data across multiple cities in their respective typologies. Our framework demonstrates the potential for tracking epidemic propagation in urban networks, analyzing socio-demographic impacts and assessing activity- and mobility-specific implications of both non-pharmaceutical and pharmaceutical intervention strategies.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Automobiles / Epidemics / COVID-19 Type of study: Observational study / Prognostic study Limits: Humans Language: English Journal: Sci Rep Year: 2021 Document Type: Article Affiliation country: S41598-021-01522-w

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Automobiles / Epidemics / COVID-19 Type of study: Observational study / Prognostic study Limits: Humans Language: English Journal: Sci Rep Year: 2021 Document Type: Article Affiliation country: S41598-021-01522-w