Your browser doesn't support javascript.
Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug.
Delinois, Louis J; De León-Vélez, Omar; Vázquez-Medina, Adriana; Vélez-Cabrera, Alondra; Marrero-Sánchez, Amanda; Nieves-Escobar, Christopher; Alfonso-Cano, Daniela; Caraballo-Rodríguez, Delvin; Rodriguez-Ortiz, Jael; Acosta-Mercado, Jemily; Benjamín-Rivera, Josué A; González-González, Kiara; Fernández-Adorno, Kysha; Santiago-Pagán, Lisby; Delgado-Vergara, Rafael; Torres-Ávila, Xaiomy; Maser-Figueroa, Andrea; Grajales-Avilés, Gladimarys; Miranda Méndez, Glorimar I; Santiago-Pagán, Javier; Nieves-Santiago, Miguel; Álvarez-Carrillo, Vanessa; Griebenow, Kai; Tinoco, Arthur D.
  • Delinois LJ; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • De León-Vélez O; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Vázquez-Medina A; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Vélez-Cabrera A; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Marrero-Sánchez A; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Nieves-Escobar C; Department of Chemistry, University of Puerto Rico, Humacao Campus, Humacao, PR 00792, USA.
  • Alfonso-Cano D; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Caraballo-Rodríguez D; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Rodriguez-Ortiz J; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Acosta-Mercado J; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Benjamín-Rivera JA; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • González-González K; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Fernández-Adorno K; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Santiago-Pagán L; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Delgado-Vergara R; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Torres-Ávila X; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Maser-Figueroa A; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Grajales-Avilés G; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Miranda Méndez GI; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Santiago-Pagán J; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Nieves-Santiago M; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Álvarez-Carrillo V; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Griebenow K; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
  • Tinoco AD; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA.
Inorganics (Basel) ; 9(11)2021 Nov.
Article in English | MEDLINE | ID: covidwho-1534098
ABSTRACT
The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Observational study / Prognostic study Language: English Year: 2021 Document Type: Article Affiliation country: Inorganics9110083

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Observational study / Prognostic study Language: English Year: 2021 Document Type: Article Affiliation country: Inorganics9110083