Your browser doesn't support javascript.
Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar.
Andriamandimby, Soa Fy; Brook, Cara E; Razanajatovo, Norosoa; Randriambolamanantsoa, Tsiry H; Rakotondramanga, Jean-Marius; Rasambainarivo, Fidisoa; Raharimanga, Vaomalala; Razanajatovo, Iony Manitra; Mangahasimbola, Reziky; Razafindratsimandresy, Richter; Randrianarisoa, Santatra; Bernardson, Barivola; Rabarison, Joelinotahiana Hasina; Randrianarisoa, Mirella; Nasolo, Frédéric Stanley; Rabetombosoa, Roger Mario; Ratsimbazafy, Anne-Marie; Raharinosy, Vololoniaina; Rabemananjara, Aina H; Ranaivoson, Christian H; Razafimanjato, Helisoa; Randremanana, Rindra; Héraud, Jean-Michel; Dussart, Philippe.
  • Andriamandimby SF; Virology Unit, Institut Pasteur de Madagascar, Madagascar. Electronic address: soafy@pasteur.mg.
  • Brook CE; Department of Ecology and Evolution, University of Chicago, United States.
  • Razanajatovo N; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Randriambolamanantsoa TH; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Rakotondramanga JM; Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Madagascar.
  • Rasambainarivo F; Department of Ecology and Evolutionary Biology, Princeton University, United States.
  • Raharimanga V; Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Madagascar.
  • Razanajatovo IM; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Mangahasimbola R; Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Madagascar.
  • Razafindratsimandresy R; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Randrianarisoa S; Department of Veterinary Sciences and Medicine, University of Antananarivo, Madagascar.
  • Bernardson B; Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Madagascar.
  • Rabarison JH; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Randrianarisoa M; Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Madagascar.
  • Nasolo FS; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Rabetombosoa RM; Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Madagascar.
  • Ratsimbazafy AM; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Raharinosy V; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Rabemananjara AH; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Ranaivoson CH; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Razafimanjato H; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
  • Randremanana R; Virology Unit, Institut Pasteur de Madagascar, Madagascar; Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Madagascar.
  • Héraud JM; Virology Unit, Institut Pasteur of Dakar, Senegal.
  • Dussart P; Virology Unit, Institut Pasteur de Madagascar, Madagascar.
Epidemics ; 38: 100533, 2022 03.
Article in English | MEDLINE | ID: covidwho-1540625
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (Ct) value data from our RT-qPCR platform, demonstrating a peak in high viral load, low-Ct value infections temporally coincident with peak epidemic growth rates estimated in real time from publicly-reported incidence data and retrospectively from our own laboratory testing data across three administrative regions. We additionally demonstrate a statistically significant effect of duration of time since infection onset on Ct value, suggesting that Ct value can be used as a biomarker of the stage at which an individual is sampled in the course of an infection trajectory. As an extension, the population-level Ct distribution at a given timepoint can be used to estimate population-level epidemiological dynamics. We illustrate this concept by adopting a recently-developed, nested modeling approach, embedding a within-host viral kinetics model within a population-level Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate epidemic growth rates from cross-sectional Ct distributions across three regions in Madagascar. We find that Ct-derived epidemic growth estimates slightly precede those derived from incidence data across the first epidemic wave, suggesting delays in surveillance and case reporting. Our findings indicate that public reporting of Ct values could offer an important resource for epidemiological inference in low surveillance settings, enabling forecasts of impending incidence peaks in regions with limited case reporting.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Type of study: Observational study / Prognostic study / Randomized controlled trials Limits: Humans Country/Region as subject: Africa Language: English Journal: Epidemics Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Type of study: Observational study / Prognostic study / Randomized controlled trials Limits: Humans Country/Region as subject: Africa Language: English Journal: Epidemics Year: 2022 Document Type: Article