Your browser doesn't support javascript.
Aerosol release, distribution, and prevention during aerosol therapy: a simulated model for infection control.
Mac Giolla Eain, Marc; Cahill, Ronan; MacLoughlin, Ronan; Nolan, Kevin.
  • Mac Giolla Eain M; Aerogen Ltd, IDA Business Park, Galway, Ireland.
  • Cahill R; School of Medicine, UCD Centre for Precision Surgery, University College Dublin, Dublin, Ireland.
  • MacLoughlin R; Aerogen Ltd, IDA Business Park, Galway, Ireland.
  • Nolan K; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland.
Drug Deliv ; 29(1): 10-17, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1577575
ABSTRACT
Aerosol therapy is used to deliver medical therapeutics directly to the airways to treat respiratory conditions. A potential consequence of this form of treatment is the release of fugitive aerosols, both patient derived and medical, into the environment and the subsequent exposure of caregivers and bystanders to potential viral infections. This study examined the release of these fugitive aerosols during a standard aerosol therapy to a simulated adult patient. An aerosol holding chamber and mouthpiece were connected to a representative head model and breathing simulator. A combination of laser and Schlieren imaging was used to non-invasively visualize the release and dispersion of fugitive aerosol particles. Time-varying aerosol particle number concentrations and size distributions were measured with optical particle sizers at clinically relevant positions to the simulated patient. The influence of breathing pattern, normal and distressed, supplemental air flow, at 0.2 and 6 LPM, and the addition of a bacterial filter to the exhalation port of the mouthpiece were assessed. Images showed large quantities of fugitive aerosols emitted from the unfiltered mouthpiece. The images and particle counter data show that the addition of a bacterial filter limited the release of these fugitive aerosols, with the peak fugitive aerosol concentrations decreasing by 47.3-83.3%, depending on distance from the simulated patient. The addition of a bacterial filter to the mouthpiece significantly reduces the levels of fugitive aerosols emitted during a simulated aerosol therapy, p≤ .05, and would greatly aid in reducing healthcare worker and bystander exposure to potentially harmful fugitive aerosols.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Respiratory Therapy / Nebulizers and Vaporizers / Drug Delivery Systems / Infectious Disease Transmission, Patient-to-Professional / Aerosols / COVID-19 Type of study: Prognostic study Limits: Humans Language: English Journal: Drug Deliv Journal subject: Pharmacology / Drug Therapy Year: 2022 Document Type: Article Affiliation country: 10717544.2021.2015482

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Respiratory Therapy / Nebulizers and Vaporizers / Drug Delivery Systems / Infectious Disease Transmission, Patient-to-Professional / Aerosols / COVID-19 Type of study: Prognostic study Limits: Humans Language: English Journal: Drug Deliv Journal subject: Pharmacology / Drug Therapy Year: 2022 Document Type: Article Affiliation country: 10717544.2021.2015482