Your browser doesn't support javascript.
ABSTRACT
Human coronaviruses (HCoVs) are associated with a range of respiratory symptoms. The discovery of severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome, and SARS-CoV-2 pose a significant threat to human health. In this study, we developed a method (HCoV-MS) that combines multiplex PCR with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), to detect and differentiate seven HCoVs simultaneously. The HCoV-MS method had high specificity and sensitivity, with a 1–5 copies/reaction detection limit. To validate the HCoV-MS method, we tested 163 clinical samples, and the results showed good concordance with real-time PCR. Additionally, the detection sensitivity of HCoV-MS and real-time PCR was comparable. The HCoV-MS method is a sensitive assay, requiring only 1 μL of a sample. Moreover, it is a high-throughput method, allowing 384 samples to be processed simultaneously in 30 min. We propose that this method be used to complement real-time PCR for large-scale screening studies.

Full text: Available Collection: Databases of international organizations Database: MDPI Language: English Journal: COVID Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: MDPI Language: English Journal: COVID Year: 2022 Document Type: Article