Your browser doesn't support javascript.
Unravelling multiple removal pathways of oseltamivir in wastewater by microalgae through experimentation and computation.
Zeeshan, Qasim M; Qiu, Shuang; Gu, Jia; Abbew, Abdul-Wahab; Wu, Zhengshuai; Chen, Zhipeng; Xu, Sai; Ge, Shijian.
  • Zeeshan QM; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Qiu S; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Gu J; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Abbew AW; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Wu Z; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Chen Z; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Xu S; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Ge S; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China. Electronic address: geshijian1221@njust.edu.cn.
J Hazard Mater ; 427: 128139, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1587273
ABSTRACT
Increased worldwide consumption of antiviral drugs (AVDs) amid COVID-19 has induced enormous burdens to the existing wastewater treatment systems. Microalgae-based bioremediation is a competitive alternative technology due to its simultaneous nutrient recovery and sustainable biomass production. However, knowledge about the fate, distribution, and interaction of AVDs with microalgae is yet to be determined. In this study, a concentration-determined influence of AVD oseltamivir (OT) was observed on the biochemical pathway of Chlorella sorkiniana (C.S-N1) in synthetic municipal wastewater. The results showed that high OT concentration inhibited biomass growth through increased oxidative stress and restrained photosynthesis. Nevertheless, complete OT removal was achieved at its optimized concentration of 10 mg/L by various biotic (82%) and abiotic processes (18.0%). The chemical alterations in three subtypes of extracellular polymeric substances (EPS) were primarily investigated by electrostatic (OT +8.22 mV vs. C.S-N1 -18.31 mV) and hydrophobic interactions between EPS-OT complexes supported by secondary structure protein analysis. Besides, six biodegradation-catalyzed transformation products were identified by quadrupole-time-of-flight mass spectrometer and by density functional theory. Moreover, all the TPs exhibited log Kow ≤ 5 and bioconcentration factor values of < 5000 L/kg, meeting the practical demands of environmental sustainability. This study broadens our understanding of microalgal bioadsorption and biodegradation, promoting microalgae bioremediation for nutrient recovery and AVDs removal.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Chlorella / Microalgae / COVID-19 Limits: Humans Language: English Journal: J Hazard Mater Journal subject: Environmental Health Year: 2022 Document Type: Article Affiliation country: J.jhazmat.2021.128139

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Chlorella / Microalgae / COVID-19 Limits: Humans Language: English Journal: J Hazard Mater Journal subject: Environmental Health Year: 2022 Document Type: Article Affiliation country: J.jhazmat.2021.128139