Your browser doesn't support javascript.
A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARS-CoV-2 infection model.
Peter, Antonia Sophia; Roth, Edith; Schulz, Sebastian R; Fraedrich, Kirsten; Steinmetz, Tobit; Damm, Dominik; Hauke, Manuela; Richel, Elie; Mueller-Schmucker, Sandra; Habenicht, Katharina; Eberlein, Valentina; Issmail, Leila; Uhlig, Nadja; Dolles, Simon; Grüner, Eva; Peterhoff, David; Ciesek, Sandra; Hoffmann, Markus; Pöhlmann, Stefan; McKay, Paul F; Shattock, Robin J; Wölfel, Roman; Socher, Eileen; Wagner, Ralf; Eichler, Jutta; Sticht, Heinrich; Schuh, Wolfgang; Neipel, Frank; Ensser, Armin; Mielenz, Dirk; Tenbusch, Matthias; Winkler, Thomas H; Grunwald, Thomas; Überla, Klaus; Jäck, Hans-Martin.
  • Peter AS; Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Roth E; Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Schulz SR; Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Fraedrich K; Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Steinmetz T; Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Damm D; Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Hauke M; Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Richel E; Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Mueller-Schmucker S; Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Habenicht K; Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Eberlein V; Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
  • Issmail L; Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
  • Uhlig N; Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
  • Dolles S; Department of Chemistry & Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Grüner E; Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Peterhoff D; Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.
  • Ciesek S; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
  • Hoffmann M; Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
  • Pöhlmann S; German Centre for Infection Research, External Partner Site, Frankfurt, Germany.
  • McKay PF; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany.
  • Shattock RJ; Infection Biology Unit, German Primate Center, Göttingen, Germany.
  • Wölfel R; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
  • Socher E; Infection Biology Unit, German Primate Center, Göttingen, Germany.
  • Wagner R; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
  • Eichler J; Department of Infectious Diseases, Imperial College London, London, UK.
  • Sticht H; Department of Infectious Diseases, Imperial College London, London, UK.
  • Schuh W; Bundeswehr Institute of Microbiology, Munich, Germany.
  • Neipel F; German Center for Infection Research, Partner Site Munich, Munich, Germany.
  • Ensser A; Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Mielenz D; Division of Bioinformatics, Institute of Biochemistry, Emil-Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Tenbusch M; Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Winkler TH; Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.
  • Grunwald T; Department of Chemistry & Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Überla K; Division of Bioinformatics, Institute of Biochemistry, Emil-Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
  • Jäck HM; Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
Eur J Immunol ; 52(5): 770-783, 2022 05.
Article in English | MEDLINE | ID: covidwho-1589126
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Spike Glycoprotein, Coronavirus / COVID-19 Limits: Animals / Humans Language: English Journal: Eur J Immunol Year: 2022 Document Type: Article Affiliation country: Eji.202149374

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Spike Glycoprotein, Coronavirus / COVID-19 Limits: Animals / Humans Language: English Journal: Eur J Immunol Year: 2022 Document Type: Article Affiliation country: Eji.202149374