Your browser doesn't support javascript.
SARS-CoV-2 variants with reduced infectivity and varied sensitivity to the BNT162b2 vaccine are developed during the course of infection.
Khateeb, Dina; Gabrieli, Tslil; Sofer, Bar; Hattar, Adi; Cordela, Sapir; Chaouat, Abigael; Spivak, Ilia; Lejbkowicz, Izabella; Almog, Ronit; Mandelboim, Michal; Bar-On, Yotam.
  • Khateeb D; Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • Gabrieli T; Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • Sofer B; Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • Hattar A; Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • Cordela S; Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • Chaouat A; The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel.
  • Spivak I; Department of Pediatrics B, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.
  • Lejbkowicz I; Epidemiology Unit and Biobank, Rambam Health Care Campus, Haifa, Israel.
  • Almog R; Epidemiology Unit and Biobank, Rambam Health Care Campus, Haifa, Israel.
  • Mandelboim M; Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Israel.
  • Bar-On Y; Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
PLoS Pathog ; 18(1): e1010242, 2022 01.
Article in English | MEDLINE | ID: covidwho-1622379
ABSTRACT
In-depth analysis of SARS-CoV-2 quasispecies is pivotal for a thorough understating of its evolution during infection. The recent deployment of COVID-19 vaccines, which elicit protective anti-spike neutralizing antibodies, has stressed the importance of uncovering and characterizing SARS-CoV-2 variants with mutated spike proteins. Sequencing databases have allowed to follow the spread of SARS-CoV-2 variants that are circulating in the human population, and several experimental platforms were developed to study these variants. However, less is known about the SARS-CoV-2 variants that are developed in the respiratory system of the infected individual. To gain further insight on SARS-CoV-2 mutagenesis during natural infection, we preformed single-genome sequencing of SARS-CoV-2 isolated from nose-throat swabs of infected individuals. Interestingly, intra-host SARS-CoV-2 variants with mutated S genes or N genes were detected in all individuals who were analyzed. These intra-host variants were present in low frequencies in the swab samples and were rarely documented in current sequencing databases. Further examination of representative spike variants identified by our analysis showed that these variants have impaired infectivity capacity and that the mutated variants showed varied sensitivity to neutralization by convalescent plasma and to plasma from vaccinated individuals. Notably, analysis of the plasma neutralization activity against these variants showed that the L1197I mutation at the S2 subunit of the spike can affect the plasma neutralization activity. Together, these results suggest that SARS-CoV-2 intra-host variants should be further analyzed for a more thorough characterization of potential circulating variants.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Genome, Viral / Databases, Nucleic Acid / Spike Glycoprotein, Coronavirus / Coronavirus Nucleocapsid Proteins / SARS-CoV-2 / COVID-19 / BNT162 Vaccine / Mutation Type of study: Prognostic study Topics: Vaccines / Variants Limits: Adult / Aged / Child / Female / Humans / Male / Middle aged Language: English Journal: PLoS Pathog Year: 2022 Document Type: Article Affiliation country: Journal.ppat.1010242

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Genome, Viral / Databases, Nucleic Acid / Spike Glycoprotein, Coronavirus / Coronavirus Nucleocapsid Proteins / SARS-CoV-2 / COVID-19 / BNT162 Vaccine / Mutation Type of study: Prognostic study Topics: Vaccines / Variants Limits: Adult / Aged / Child / Female / Humans / Male / Middle aged Language: English Journal: PLoS Pathog Year: 2022 Document Type: Article Affiliation country: Journal.ppat.1010242