Your browser doesn't support javascript.
Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing.
Luedemann, Max; Stadler, Daniela; Cheng, Cho-Chin; Protzer, Ulrike; Knolle, Percy A; Donakonda, Sainitin.
  • Luedemann M; Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
  • Stadler D; Institute of Virology, School of Medicine, TUM, Germany.
  • Cheng CC; Institute of Virology, School of Medicine, TUM, Germany.
  • Protzer U; Institute of Virology, School of Medicine, TUM, Germany.
  • Knolle PA; Helmholtz Zentrum München, Munich, Germany.
  • Donakonda S; German Center for Infection Research (DZIF), Munich Partner Site, Germany.
Comput Struct Biotechnol J ; 20: 799-811, 2022.
Article in English | MEDLINE | ID: covidwho-1654283
ABSTRACT
Drug-repurposing has been instrumental to identify drugs preventing SARS-CoV-2 replication or attenuating the disease course of COVID-19. Here, we identify through structure-based drug-repurposing a dual-purpose inhibitor of SARS-CoV-2 infection and of IL-6 production by immune cells. We created a computational structure model of the receptor binding domain (RBD) of the SARS-CoV-2 spike 1 protein, and used this model for insilico screening against a library of 6171 molecularly defined binding-sites from drug molecules. Molecular dynamics simulation of candidate molecules with high RBD binding-scores in docking analysis predicted montelukast, an antagonist of the cysteinyl-leukotriene-receptor, to disturb the RBD structure, and infection experiments demonstrated inhibition of SARS-CoV-2 infection, although montelukast binding was outside the ACE2-binding site. Molecular dynamics simulation of SARS-CoV-2 variant RBDs correctly predicted interference of montelukast with infection by the beta but not the more infectious alpha variant. With distinct binding sites for RBD and the leukotriene receptor, montelukast also prevented SARS-CoV-2-induced IL-6 release from immune cells. The inhibition of SARS-CoV-2 infection through a molecule binding distal to the ACE-binding site of the RBD points towards an allosteric mechanism that is not conserved in the more infectious alpha and delta SARS-CoV-2 variants.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Topics: Variants Language: English Journal: Comput Struct Biotechnol J Year: 2022 Document Type: Article Affiliation country: J.csbj.2022.01.024

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Topics: Variants Language: English Journal: Comput Struct Biotechnol J Year: 2022 Document Type: Article Affiliation country: J.csbj.2022.01.024